Technische Universität Berlin Fakultät II – Mathematik und Naturwissenschaften Institut für Mathematik Tobias Brüll

Systems and control theory Series 2

Task 1:

- 1. Let $P \in \mathbb{C}[\lambda]^{p,q}$ have full row rank $p = \operatorname{rank}_{\mathbb{C}(\lambda)}(P)$. Use the Smith form to construct a (rational) right inverse, i.e., a matrix $Q \in \mathbb{C}(\lambda)^{q,p}$ such that PQ = I. Under which conditions can Q be chosen polynomial? What are the poles of Q?
- 2. Let $R \in \mathbb{C}(\lambda)^{p,q}$ be a rational matrix with full row rank $p = \operatorname{rank}_{\mathbb{C}(\lambda)}(R)$. Use the MacMillan form to construct a (rational) right inverse, i.e., a matrix $Q \in \mathbb{C}(\lambda)^{q,p}$ such that RQ = I. Under which conditions can Q be chosen polynomial? What are the poles and zeros of Q?

Task 2:

Assume that \tilde{U} and \tilde{V} are kernel and co-kernel spanning matrices. Further assume that \hat{U} and \hat{V} are kernel and co-kernel spanning matrices. Show that then also \tilde{U} and \hat{V} (as well as \hat{U} and \tilde{V}) are kernel and co-kernel spanning matrices.

Remark: This shows that one can speak of kernel and co-kernel spanning matrices independently.

Task 3:

Let $P \in \mathbb{C}[\lambda]^{p,q}$. Use the Smith form to show that there exists a unimodular matrix $U \in \mathbb{C}[\lambda]^{p,p}$ such that $UP = \begin{bmatrix} \tilde{P} \\ 0 \end{bmatrix}$, where \tilde{P} has full row rank.

Conclude that for every $P \in \mathbb{C}[\lambda]^{p,q}$ with $r := \operatorname{rank}_{\mathbb{C}(\lambda)}(P)$ there exists a $\tilde{P} \in \mathbb{C}[\lambda]^{r,q}$ such that $\mathcal{B}(P) = \mathcal{B}(\tilde{P})$, i.e., that one can theoretically restrict the attention to kernel representations which come from polynomial matrices with full row rank.

Task 4:

Show that $\mathcal{B}(P)$ is autonomous if and only if the following holds:

for every
$$z \in \mathcal{B}(P)$$
 with $z(t) = 0$ for $t \leq 0$ we already have $z = 0$

Task 5:

Give the analog to Theorem 1.13 which talks about right primeness.

Task 6:

- 1. Show that kernel and co-kernel spanning matrices have full column rank.
- 2. For every $R \in \mathbb{C}(\lambda)^{p,q}$ there exists a polynomial kernel matrix which is (right) prime.
- 3. For every $R \in \mathbb{C}(\lambda)^{p,q}$ there exists a polynomial co-kernel matrix which is (right) prime.

Task 7:

Show that a latent variable description defines a linear time-invariant dynamical system.

 \ominus

 \ominus

 \oplus

 \oplus

 \oplus

 \oplus

Task 8:

Show that for a square polynomial matrix $P \in \mathbb{C}[\lambda]^{p,p}$ the following are equivalent:

1.) P is prime2.) P is left prime3.) P is right prime4.) P is unimodular5.) det P is prime (i.e. a nonzero constant)6.) det P is unimodular7.) P has no zeros, i.e., $\mathfrak{Z}(P) = \emptyset$, and $\operatorname{rank}_{\mathbb{C}(\lambda)}(P) = p$

Task 9:

Let $P \in \mathbb{C}[\lambda]^{p,q}$ and let $I \subset \mathbb{R}$ be some bounded interval. Let $z \in \mathcal{C}_{\infty}^{q}$ vanish identically in I, i.e., let z(t) = 0 for $t \in I$. Show that then $P\left(\frac{d}{dt}\right)z(t) = 0$ for $t \in I$.

Task 10:

Consider the example from the last series:

With the definitions

$$P(\lambda) := \begin{bmatrix} 1 & 1 & 1 & 0 \\ -R & 0 & 0 & 1 \\ 0 & \lambda L & 0 & -1 \end{bmatrix} \quad \text{and} \quad z := \begin{vmatrix} I_R \\ I_L \\ I \\ V \end{vmatrix}$$
(1)

the system was given by $\mathcal{B}(P)$.

- 1. Consider I_R and I_L to be latent variables. Conduct elimination of latent variables to obtain $\tilde{P} \in \mathbb{C}[\lambda]^{1,2}$ which describes the manifest behavior. Use the constructive proof of Theorem 1.16 to do so.
- 2. Is P prime? Is \tilde{P} prime?
- 3. Is $\mathcal{B}(P)$ autonomous? Connect a capacitor with capacity C > 0 along the two external wires, i.e., add the additional equation $C\dot{V} = I$ to the system given by the matrix in (1). Is the resulting system autonomous?

Task 11:

Let $P \in \mathbb{C}[\lambda]^{p,q}$ and let $P = S \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} T$ be the MacMillan form. Obtain the echelon form from the MacMillan form.

Task 12:

1. Let (P,Q) be a partition of $R \in \mathbb{C}[\lambda]^{p,q}$. Prove the existence of a unimodular U such that

$$U\begin{bmatrix} P & Q \end{bmatrix} = \begin{bmatrix} P_1 & Q_1 \\ 0 & Q_2 \\ 0 & 0 \end{bmatrix}$$

where P_1 and Q_1 have full row rank.

2. Conclude that if R has full column rank, then P_1 and Q_1 are invertible.

 \oplus

 \oplus

 \ominus

0