Fakultät II - Mathematik und Naturwissenschaften
 Institut für Mathematik
 Tobias Brüll

Systems and control theory

Series 2

Task 1:

1. Let $P \in \mathbb{C}[\lambda]^{p, q}$ have full row rank $p=\operatorname{rank}_{\mathbb{C}(\lambda)}(P)$. Use the Smith form to construct a (rational) right inverse, i.e., a matrix $Q \in \mathbb{C}(\lambda)^{q, p}$ such that $P Q=I$. Under which conditions can Q be chosen polynomial? What are the poles of Q ?
2. Let $R \in \mathbb{C}(\lambda)^{p, q}$ be a rational matrix with full row rank $p=\operatorname{rank}_{\mathbb{C}(\lambda)}(R)$. Use the MacMillan form to construct a (rational) right inverse, i.e., a matrix $Q \in \mathbb{C}(\lambda)^{q, p}$ such that $R Q=I$. Under which conditions can Q be chosen polynomial? What are the poles and zeros of Q ?

Task 2:
Assume that \tilde{U} and \tilde{V} are kernel and co-kernel spanning matrices. Further assume that \hat{U} and \hat{V} are kernel and co-kernel spanning matrices. Show that then also \tilde{U} and \hat{V} (as well as \hat{U} and \tilde{V}) are kernel and co-kernel spanning matrices.
Remark: This shows that one can speak of kernel and co-kernel spanning matrices independently.

Task 3:

\oplus
Let $P \in \mathbb{C}[\lambda]^{p, q}$. Use the Smith form to show that there exists a unimodular matrix $U \in \mathbb{C}[\lambda]^{p, p}$ such that $U P=\left[\begin{array}{c}\tilde{P} \\ 0\end{array}\right]$, where \tilde{P} has full row rank.
Conclude that for every $P \in \mathbb{C}[\lambda]^{p, q}$ with $r:=\operatorname{rank}_{\mathbb{C}(\lambda)}(P)$ there exists a $\tilde{P} \in \mathbb{C}[\lambda]^{r, q}$ such that $\mathcal{B}(P)=\mathcal{B}(\tilde{P})$, i.e., that one can theoretically restrict the attention to kernel representations which come from polynomial matrices with full row rank.

Task 4:

Show that $\mathcal{B}(P)$ is autonomous if and only if the following holds:

$$
\text { for every } z \in \mathcal{B}(P) \text { with } z(t)=0 \text { for } t \leq 0 \text { we already have } z=0
$$

Task 5:

Give the analog to Theorem 1.13 which talks about right primeness.

Task 6:

1. Show that kernel and co-kernel spanning matrices have full column rank.
2. For every $R \in \mathbb{C}(\lambda)^{p, q}$ there exists a polynomial kernel matrix which is (right) prime.
3. For every $R \in \mathbb{C}(\lambda)^{p, q}$ there exists a polynomial co-kernel matrix which is (right) prime.

Task 7:
Show that a latent variable description defines a linear time-invariant dynamical system.

Show that for a square polynomial matrix $P \in \mathbb{C}[\lambda]^{p, p}$ the following are equivalent:
1.) P is prime
2.) P is left prime
3.) P is right prime
4.) P is unimodular
5.) $\operatorname{det} P$ is prime (i.e. a nonzero constant)
6.) $\operatorname{det} P$ is unimodular
7.) P has no zeros, i.e., $\mathfrak{Z}(P)=\emptyset$, and $\operatorname{rank}_{\mathbb{C}(\lambda)}(P)=p$

Task 9:

Let $P \in \mathbb{C}[\lambda]^{p, q}$ and let $I \subset \mathbb{R}$ be some bounded interval. Let $z \in \mathcal{C}_{\infty}^{q}$ vanish identically in I, i.e., let $z(t)=0$ for $t \in I$. Show that then $P\left(\frac{d}{d t}\right) z(t)=0$ for $t \in I$.

Task 10:

Consider the example from the last series:

Figure 1: A simple RL circuit
With the definitions

$$
P(\lambda):=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \tag{1}\\
-R & 0 & 0 & 1 \\
0 & \lambda L & 0 & -1
\end{array}\right] \quad \text { and } \quad z:=\left[\begin{array}{c}
I_{R} \\
I_{L} \\
I \\
V
\end{array}\right]
$$

the system was given by $\mathcal{B}(P)$.

1. Consider I_{R} and I_{L} to be latent variables. Conduct elimination of latent variables to obtain $\tilde{P} \in \mathbb{C}[\lambda]^{1,2}$ which describes the manifest behavior. Use the constructive proof of Theorem 1.16 to do so.
2. Is P prime? Is \tilde{P} prime?
3. Is $\mathcal{B}(P)$ autonomous? Connect a capacitor with capacity $C>0$ along the two external wires, i.e., add the addtional equation $C V=I$ to the system given by the matrix in (1). Is the resulting system autonomous?

Task 11:

Let $P \in \mathbb{C}[\lambda]^{p, q}$ and let $P=S\left[\begin{array}{ll}D & 0 \\ 0 & 0\end{array}\right] T$ be the MacMillan form. Obtain the echelon form from the MacMillan form.

Task 12:

1. Let (P, Q) be a partition of $R \in \mathbb{C}[\lambda]^{p, q}$. Prove the existence of a unimodular U such that

$$
U\left[\begin{array}{ll}
P & Q
\end{array}\right]=\left[\begin{array}{cc}
P_{1} & Q_{1} \\
0 & Q_{2} \\
0 & 0
\end{array}\right]
$$

where P_{1} and Q_{1} have full row rank.
2. Conclude that if R has full column rank, then P_{1} and Q_{1} are invertible.

