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Task 1:
Show that with R ∈ C(λ)p,q the para-conjugate transposed R∼ is indeed again a rational matrix. Then
show that for A ∈ C(λ)p,p, B ∈ C(λ)p,q, C ∈ C(λ)q,r, and polynomial U ∈ C[λ]p,p we have

1.) (BC)
∼
= C∼B∼ 2.)

(
A−1

)∼
= (A∼)

−1
, if A is invertible

3.) (B∼)
∼
= B 4.) With A also B∼AB is para-Hermitian

5.) With U also U∼ is unimodular 6.) rankC(λ) (B) = rankC(λ) (B
∼)

7.) If B has full row rank then B∼ has full column rank

Task 2:
For a polynomial matrix of the form P (λ) =

∑K
i=0 λ

iPi give the para-conjugate transposed in the same

form P∼(λ) =
∑K

i=0 λ
i . . ..

Task 3:
Show that for real systems it is not a restriction to assume that H = H∗. In other words, let P ∈ R[λ]p,q
be a polynomial with real coefficients. Assume that we are only interested in the real trajectories
z ∈ B(P ), i.e., the trajectories of the form z : R → Rq. Further assume that we measure the cost (or
power supply) at time point t ∈ R via (∆Kz(t))∗M(∆Kz(t)) whereM ∈ RKq,Kq is real but has no further
structure. Give an H = H∗ = HT ∈ RKq,Kq such that (∆Kz(t))∗M(∆Kz(t)) = (∆Kz(t))∗H(∆z(t)) for
all real z ∈ B(P ) and all t ∈ R.

Task 4: Part 1. is not easy.

1. Let a ∈ C. Show that for every f ∈ C1
+ there exists a x ∈ C1

+ such that ẋ = ax + f by using the
variation of constants formula.

2. Let A ∈ Cn,n. Show that for every f ∈ Cn
+ there exists a x ∈ Cn

+ such that ẋ = Ax + f by using
the Jordan canonical form and point 1.

3. Let d ∈ C[λ], d ̸= 0. Show that for every b ∈ C1
+ there exists a z ∈ Cq

+ such that d
(

d
dt

)
z = b by

replacing the higher-order, scalar differential equation by a first-order equation and using point 2.

4. Let P ∈ C[λ]p,q have full row rank. Show that for every f ∈ Cp
+ there exists a z ∈ Cq

+ such that

P
(

d
dt

)
z = b by using the Smith canonical form and point 3.

Task 5:
Let P ∈ C[λ]p,q have full column rank with Z(P ) ⊂ C−. Show that then the optimal control problem
(LQ) has a unique solution and that every H = H∗ ∈ CKq,Kq is non-negative w.r.t to P .

Task 6:
Let P ∈ C[λ]p,q and H = H∗ ∈ CqK,qK . Assume that H is not non-negative w.r.t. P . Let z0 ∈ B+(P ).
Show that it is then possible to construct trajectories of arbitrary low cost, which are equal to z0 on
(−∞, 0]. This especially implies that the optimal control problem is unsolvable.
More precisely, show the following: For every M ∈ R there exists a ẑ ∈ B+(P ) such that z0(t) = ẑ(t)
for all t ≤ 0 and ∫ ∞

0

(∆K ẑ(t))∗H(∆K ẑ(t))dt < M.

Hint: Consider z0 + αv where α ∈ R and v ∈ B+(P ) violates the assumption of non-negativity.



Task 7:

Derive the partial integration rule
∫ t1
t0

z(t)ẏ(t)dt = z(t)y(t)
∣∣∣t1
t0
−
∫ t1
t0

ż(t)y(t)dt from Lemma 4.2.

Remark: The partial integration rule was used in the proof of Lemma 4.2.

Task 8:
Let P ∈ C[λ]p,q. Show that (a) with z ∈ Cq

+ also P
(

d
dt

)
z ∈ Cp

+ is exponentially decaying and (b) if

z ∈ Cq
∞ fulfills z(t) = 0 for t ≤ 0 then also P

(
d
dt

)
z(t) = 0 for t ≤ 0.

Task 9:
Let m, d, k > 0. Consider the mass-spring-damper system described by

mq̈(t) + dq̇(t) + kq(t) = f(t),

where q, f ∈ C1
∞. Physicists in general agree that the power supply should be measured as

velocity of the mass× applied force = q̇ · f,

and that only real trajectories q, f : R → R are of interest. This especially means, that (a) if we apply
force in the direction of the velocity of the mass, then we supply (a positive amount of) energy to the
system and (b) if we apply force in the opposite direction of the velocity of the mass, then we extract
energy from the system (i.e., we supply a negative amount of energy to the system)
Let the trajectory (q0, f0) ∈ B+(

[
λ2m+ λd+ k −1

]
) =: B+(P (λ)) describe the motion of the system

in the past t ≤ 0. Rewrite each of the following problems as an optimal control problem (LQ). This
mainly means that you have to choose the correct H = H∗. Then also give the optimality system.
1.) Assume that we want to extract as much energy from the system as possible, i.e., we want to solve

sup
(q,f)∈B+(P )

(q(t),f(t))=(q0(t),f0(t)),t≤0

−
∫ ∞

0

Re
(
q̇(t)f(t)

)
dt.

Here you have to use that we are only interested in real trajectories, also see Task 3.
2.) Assume that we want to minimize the total motion/dislocation of the mass, i.e., we want to solve

inf
(q,f)∈...

∫ ∞

0

|q̇(t)|2 + |q(t)|2dt.

3.) Assume that we want to minimize the total motion and dislocation of the mass but also want to
penalize the amount of force which has to be used, i.e., we want to solve the so-called regularized problem

inf
(q,f)∈...

∫ ∞

0

|q̇(t)|2

2
+

|q(t)|2

2
+

ϵ

2
|f(t)|2dt,

where ϵ > 0.

Task 10:
Consider the familiar electrical circuit

P (λ) :=

 1 1 1 0
−R 0 0 1
0 λL 0 −1

 and z :=


IR
IL
I
V

 ,

where z ∈ C4
∞. Physicists in general agree that the supplied energy should be measured as

current× voltage = I · V,

if only real trajectories z : R → R4 are considered. Assume we know that the system evolved until the
time point t = 0 along the trajectory z0 ∈ B+(P ) and we want to extract as much energy from the
system as possible, i.e., we want to maximize

sup
z∈B+(P )

z(t)=z0(t),t≤0

−
∫ ∞

0

Re
(
I(t)V (t)

)
dt.

Rewrite the problem as an optimal control problem of the form (LQ). This mainly means that you have
to choose the correct H = H∗. Then also give the optimality system.


