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For this complete series we use the notation

J := Jp :=

[
0 I
−I 0

]
,

and with λF +G ∈ C[λ]p,q1 and H = H∗ ∈ Cq we denote by

N(λ) :=

[
0 λF +G

−λF ∗ +G∗ H

]
∈ C[λ]p+q,p+q,

the matrix of the optimality system.

Task 1:
Show that under Assumptions 4.8 the matrix polynomial N is invertible.

Task 2:
Let Y ∈ Cq,q. Show that then there exists a unitary matrix W ∈ Cq,q such that YW is Hermitian.
Hint: Use the singular value decomposition.

Task 3:
Show that [

I 0
Z∗ I

] [
0 λF +G

−λF ∗ +G∗ H

] [
I Z
0 I

]
=

[
0 λF +G

−λF ∗ +G∗ C∗C

]
(1)

is equivalent to
Z∗F = F ∗Z and H +G∗Z + Z∗G = C∗C.

Task 4:
Let N = N∼ ∈ C[λ]p,p be a para-Hermitian polynomial matrix. Show that N is Hermitian on the

imaginary axis, i.e., show that N(ıω0) = (N(ıω0))
∗ def
= N∗(ıω0) for all ω0 ∈ R.

Task 5: (The energy perspective)
Let λF +G ∈ C[λ]p,q1 , H = H∗ ∈ Cq,q, and let Z,C fulfill (1). Define the quadratic function Θ : Cq → R
via

Θ(y) := y∗F ∗Zy = y∗Z∗Fy.

Show that Θ is a so-called storage function, i.e., that it fulfills the so-called dissipation inequality

Θ(z(t1))−Θ(z(t0)) ≤
∫ t1

t0

z∗(t)Hz(t)dt, (2)

for all t0 < t1 and all z ∈ B(λF +G).
Conclude that then H is non-negative w.r.t. λF +G.
Hint: Use the fundamental theorem Θ(z(t1))−Θ(z(t0)) =

∫ t1
t0

d
dt (Θ(z(t))) dt and Task 3.

Remark: One can think of Θ as measuring the energy which is stored internally in the system B(λF+G).
The term on the left side of (2) then measures the gain in internally stored energy, while the term on
the right side of (2) measures the energy supply in the time interval [t0, t1].



Task 6: (The cost perspective)
Let P (λ) := λF + G ∈ C[λ]p,q1 , H = H∗ ∈ Cq,q, and let Z,C fulfill (1). Define the quadratic function
Θ : Cq → R via

Θ(y) := −y∗F ∗Zy = −y∗Z∗Fy.

Show that Θ measures the cost of an optimal trajectory, i.e., show that for any trajectory ẑ ∈ B+(P )
which is optimal in the sense of (LQ) (for some z0 ∈ B+(λF +G)) we have

Θ (ẑ(0)) =

∫ ∞

0

ẑ∗(t)Hẑ(t)dt.

Hint: Use Theorem 4.10, 2.) b).
Remark: Compare this with Theorem 4.5.

Task 7:
A matrix H ∈ C2n,2n is called Hamiltonian if HJ is Hermitian.
A matrix S ∈ C2n,2n is called symplectic if S∗JS = J .

(a) Use J−1 = −J = J∗ to show that the following are equivalent:

1. H is Hamiltonian.

2. HJ = −JH∗ is Hamiltonian.

3. JH is Hermitian.

4. There exist matrices A = A∗, B,C = C∗ ∈ Cn,n such that H =

[
B A
C −B∗

]
.

(b) Show that for the eigenvalues of a Hamiltonian matrix H ∈ C2n,2n we have

σ (H) = Z (λJ − (HJ)) ,

and conclude that the eigenvalues of a Hamiltonian matrix are symmetric w.r.t. the imaginary axis.

(c) (Hamiltonian Schur form) Let H ∈ C2n,2n be a Hamiltonian matrix which has no purely imaginary
eigenvalues. Show that in this case the exists a symplectic unitary transformation S ∈ C2n,2n which
brings H to the Hamiltonian Schur form

S∗HS =

[
L K
0 −L∗

]
,

where K = K∗ ∈ Cn,n is Hermitian and L ∈ Cn,n is a lower triangular matrix which only has eigenvalues
with negative real part.
Remark: Control theory courses are often based on Hamiltonian matrices, rather than para-Hermitian
matrix polynomials.

Task 8:
For the system

ẋ(t) = u(t),

where x, u ∈ C1
∞, consider the optimal control problem

inf
x(0)=x0

∫ ∞

0

|x(t)|2 + |u(t)|2dt. (3)

Compute c1, c2 ∈ C such that the solution of the controlled system{
ẋ(t) = u(t)

0 = c1x(t) + c2u(t)
,

solve the optimal control problem (3). Also give the closed-loop dynamics.
Hint: Follow the construction in the proof of Theorem 4.10. Note the the W was only needed to show
that Y4 = Ỹ4W is invertible. Here one can immediately see that Ỹ4 is already invertible. Thus (in the
proof of Theorem 4.10) one can set Y4 := Ỹ4, Y2 := Ỹ2 and with this immediately construct Ŷ to obtain
the Z. Finally, use the equivalence in (1) to compute C =

[
c1 c2

]
as a factor of H+G∗Z+Z∗G = C∗C.


