Proof for the Smith form

Lemma 1 (Polynomial division). Let a,b € C[A] be two polynomials with b # 0 and dega >
degb > 0. Then there exist unique q,r € C[A] such that

a=qgb+r (1)
with degr < degb. If dega > degb we also have deg q = dega — degb.

Proof. The result follows from division with remainder. If dega < degb then the statement
is trivial. For the other case, we give an inductive proof.
Base case: dega = degb in this case a and b have the form a(\) = Zz’K:O a;\' and

b(\) = ZiK:O b\, with ag, by # 0. Define ¢ € C[)\] as a constant g(\) := %<, Then

W =3 (5 ) v

=0

and thus r € C[A] defined by

r(\) == (a — gb)(\) = f: (ai - bZi) - Ki‘l <ai - bZi) A

=0 =0

is a polynomial of degree < K — 1 < K. Also we have degqg =0= K — K = dega — degb.
Inductive step: Write a and b in the form a()\) = ZfigM a;\* and b(\) = ZiK:O b\,
with M € N and a4, bx # 0. Define ¢ € C[A] by ¢o(N) := )\M‘“gizM. Then

X AK+M & AK+M
BN =) b—= M — bio g ———\¢
(900)(A) ; b i;j M
and thus ry € C[A] defined by
K+M a M-l KM-1 M—1
7“0()\) = (a—qob)()\): Z <ai—biM IZ+M>)\7'+Zai)\Z: Z —I—Z,
i=M K i=0 i=M i=0

is a polynomial of degree < K + M — 1. Using the induction hypothesis we conclude the
existence of ¢1, € C[A] which fulfill rg = 16+, degr < degb, and degq; = degro—degb =
(K+M—1)— K =M — 1. Setting ¢ := qo + ¢1 we find that

a=qb+ro=qb+qb+r=_(qp+q)b+r=qgb+r

Since degqy = M — 1 < degqg we also have degq = degqo = M = (K + M) — K =
dega — deghb.
For uniqueness, let ¢, € C[A] and ¢, 7 € C[A] both fulfill (1). Then we have

(r—7)+blg—q) =0 (2)

If ¢ — p was nonzero, then degb(q — ¢) > degb > degr — 7 which contradicts (2). This
implies ¢ = ¢ which again by (2) implies r = 7. O

Definition 2.  We say that b € C[)\], b # 0 divides a € C[}] if in Lemma 1 we have r = 0.



Theorem 3 (Smith canonical form). Let P € C[A]»?. Then there exists an r € Ny and
unimodular matrices S € C[A]PP, T € C[A|"9 such that

diag (d1,...,d.) 0

P=5 0 0

T
where dy,...,d,. € C[\] are polynomials with d; # 0 fori=1,...,r and d;y1 divides d; for
t=1,...,r—1.

Proof. (From [PW98, Theorem B.1.4]) The proof is an algorithm. Assume that P is nonzero,
since otherwise the statement is trivial. By mindeg(P) we denote the minimal degree of all
the nonzero elements of P. In the following we are going to apply a series of unimodular
pre- and post-multiplications to P until P has Smith form. Since the product of unimodular
matrices is again unimodular we have then indeed found the Smith form. To simplify
notation we will in the following write P, whenever actually the matrix is meant which arises
from P by the proclaimed unimodular pre- and post-multiplications. With this convention,
the algorithm is finished if P is in Smith form. A will denote the elements of P by p; ;.

a) Apply row and column permutations to P to achieve that a nonzero element with
degree mindeg(P) appears at the (1,1) position. Using Lemma 1 (withb = p; ; and a = p; 1),

we obtain ¢; ; and r; 1 such that p; 1 = ¢;1p1,1 + 73,1 for ¢ =2,...,p. Then we have
1 P11 P12 - DPlg P11 P12t DPlg
—q21 1 P21 P22 0 Pig 21 * ce *
—dp,1 1 [Ppa DPp2 - DPpg p1 X K
=:Qo

where the x-entries denote polynomials which are not further specified and (g is unimodular.
Similar, by a post-multiplication with a unimodular matrix one can achieve that all entries
in the (1, j) positions (with j = 2,...,¢q) have degree smaller than p; ;. If we do not have

pin=0fori=2,...,pandp;;=0for j=2,...,q, (3)

then mindeg(P) has at least decreased. In this case goto a). If mindeg(P) = 0 at the
beginning of a), then at the end, condition (3) will be fulfilled in any case. Thus, since degrees
(of nonzero polynomials) are nonnegative and mindeg(P) decreases in each repetition of a),
we see that (3) is fulfilled after a finite number of steps; then goto b).

b) We have reached the situation (3). Either py 1 divides all the other elements of P, or
there exists a column that contains an element that is not a multiple of the (1,1) element.
If the latter is true, add this column to the first column of P and start again at a). Because
of Definition 2 this will decrease mindeg(P) in the first step. Thus, after a finite number of
repetitions of b), we have that the element p; 1 divides all other elements, since this holds
at the latest when mindeg(P) = 0.

c) We have reached the situation (3) such the the element p; 1 divides all other entries
of P. Factor out the common divisor from P (call it d;) such that the (1,1) element of
P becomes a nonzero constant. Then, in an inductive fashion, start again at a) with the
matrix obtained from P by deleting the first row and column.

O
One can show that the quantities di,...,d, in the Smith form are unique, see [Gan59,
p. 139, §3).
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