
Proof for the Smith form

Lemma 1 (Polynomial division). Let a, b ∈ C[λ] be two polynomials with b ̸= 0 and deg a ≥
deg b ≥ 0. Then there exist unique q, r ∈ C[λ] such that

a = qb+ r (1)

with deg r < deg b. If deg a ≥ deg b we also have deg q = deg a− deg b.

Proof. The result follows from division with remainder. If deg a < deg b then the statement
is trivial. For the other case, we give an inductive proof.

Base case: deg a = deg b in this case a and b have the form a(λ) =
∑K

i=0 aiλ
i and

b(λ) =
∑K

i=0 biλ
i, with aK , bK ̸= 0. Define q ∈ C[λ] as a constant q(λ) := aK

bK
. Then

(qb)(λ) =
K∑
i=0

(
bi
aK
bK

)
λi

and thus r ∈ C[λ] defined by

r(λ) := (a− qb)(λ) =

K∑
i=0

(
ai − bi

aK
bK

)
λi =

K−1∑
i=0

(
ai − bi

aK
bK

)
λi

is a polynomial of degree ≤ K − 1 < K. Also we have deg q = 0 = K −K = deg a− deg b.
Inductive step: Write a and b in the form a(λ) =

∑K+M
i=0 aiλ

i and b(λ) =
∑K

i=0 biλ
i,

with M ∈ N and aK+M , bK ̸= 0. Define q0 ∈ C[λ] by q0(λ) := λM aK+M

bK
. Then

(q0b)(λ) =
K∑
i=0

bi
aK+M

bK
λi+M =

K+M∑
i=M

bi−M
aK+M

bK
λi

and thus r0 ∈ C[λ] defined by

r0(λ) := (a− q0b)(λ) =
K+M∑
i=M

(
ai − bi−M

aK+M

bK

)
λi +

M−1∑
i=0

aiλ
i =

K+M−1∑
i=M

. . .+
M−1∑
i=0

. . . ,

is a polynomial of degree ≤ K + M − 1. Using the induction hypothesis we conclude the
existence of q1, r ∈ C[λ] which fulfill r0 = q1b+r, deg r < deg b, and deg q1 = deg r0−deg b =
(K +M − 1)−K = M − 1. Setting q := q0 + q1 we find that

a = q0b+ r0 = q0b+ q1b+ r = (q0 + q1)b+ r = qb+ r.

Since deg q1 = M − 1 ≤ deg q0 we also have deg q = deg q0 = M = (K + M) − K =
deg a− deg b.

For uniqueness, let q, r ∈ C[λ] and q̃, r̃ ∈ C[λ] both fulfill (1). Then we have

(r − r̃) + b(q − q̃) = 0. (2)

If q − p was nonzero, then deg b(q − q̃) ≥ deg b > deg r − r̃ which contradicts (2). This
implies q = q̃ which again by (2) implies r = r̃.

Definition 2. We say that b ∈ C[λ], b ̸= 0 divides a ∈ C[λ] if in Lemma 1 we have r = 0.
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Theorem 3 (Smith canonical form). Let P ∈ C[λ]p,q. Then there exists an r ∈ N0 and
unimodular matrices S ∈ C[λ]p,p, T ∈ C[λ]q,q such that

P = S

[
diag (d1, . . . , dr) 0

0 0

]
T

where d1, . . . , dr ∈ C[λ] are polynomials with di ̸= 0 for i = 1, . . . , r and di+1 divides di for
i = 1, . . . , r − 1.

Proof. (From [PW98, Theorem B.1.4]) The proof is an algorithm. Assume that P is nonzero,
since otherwise the statement is trivial. By mindeg(P ) we denote the minimal degree of all
the nonzero elements of P . In the following we are going to apply a series of unimodular
pre- and post-multiplications to P until P has Smith form. Since the product of unimodular
matrices is again unimodular we have then indeed found the Smith form. To simplify
notation we will in the following write P , whenever actually the matrix is meant which arises
from P by the proclaimed unimodular pre- and post-multiplications. With this convention,
the algorithm is finished if P is in Smith form. A will denote the elements of P by pi,j .

a) Apply row and column permutations to P to achieve that a nonzero element with
degree mindeg(P ) appears at the (1, 1) position. Using Lemma 1 (with b = p1,1 and a = pi,1),
we obtain qi,1 and ri,1 such that pi,1 = qi,1p1,1 + ri,1 for i = 2, . . . , p. Then we have

1
−q2,1 1

...
. . .

−qp,1 1


︸ ︷︷ ︸

=:Q0


p1,1 p1,2 · · · p1,q
p2,1 p2,2 · · · p1,q
...

...
...

pp,1 pp,2 · · · pp,q

 =


p1,1 p1,2 · · · p1,q
r2,1 ⋆ · · · ⋆
...

...
...

rp,1 ⋆ · · · ⋆



where the ⋆-entries denote polynomials which are not further specified and Q0 is unimodular.
Similar, by a post-multiplication with a unimodular matrix one can achieve that all entries
in the (1, j) positions (with j = 2, . . . , q) have degree smaller than p1,1. If we do not have

pi,1 = 0 for i = 2, . . . , p and p1,j = 0 for j = 2, . . . , q, (3)

then mindeg(P ) has at least decreased. In this case goto a). If mindeg(P ) = 0 at the
beginning of a), then at the end, condition (3) will be fulfilled in any case. Thus, since degrees
(of nonzero polynomials) are nonnegative and mindeg(P ) decreases in each repetition of a),
we see that (3) is fulfilled after a finite number of steps; then goto b).

b) We have reached the situation (3). Either p1,1 divides all the other elements of P , or
there exists a column that contains an element that is not a multiple of the (1, 1) element.
If the latter is true, add this column to the first column of P and start again at a). Because
of Definition 2 this will decrease mindeg(P ) in the first step. Thus, after a finite number of
repetitions of b), we have that the element p1,1 divides all other elements, since this holds
at the latest when mindeg(P ) = 0.

c) We have reached the situation (3) such the the element p1,1 divides all other entries
of P . Factor out the common divisor from P (call it d1) such that the (1, 1) element of
P becomes a nonzero constant. Then, in an inductive fashion, start again at a) with the
matrix obtained from P by deleting the first row and column.

One can show that the quantities d1, . . . , dr in the Smith form are unique, see [Gan59,
p. 139, §3].
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