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—! Quasi-Linear DAE [ Equations of motion ~ |—— —! Quasi-Linear DAE | E—

pr = v
_ p2 = V2 _
E(x,t)x = k(x,t) T — 2p A E(x,t)x = k(x,t)
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with hidden constraints ... with the hidden constraints ... with initial values
. of level 1 ... of level 1
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A Quasi-Linear DAE | | Discretization A QuaS| Linear DAE | | Discretization —

e.g., with implicit Euler method e.g., with implicit Euler method

OZE(X,'7 t,')(X,'—X,',l)—hk(X,', t,') E(X, t)X _ k(X, t) 0= E(X,', t,')(X,'—X,',l)—hk(X,', t,')
(0= F(x)) (0 =F(x))

nonlinear equation for x;, nonlinear equation for x;,

E(x,t)x = k(x,t)

with initial values with initial values e.g., with Newtons method

J(xf)DE = —F(x)
x(0) = xo x(0) = x k1 _ ok Ak

X; =
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Why we become in trouble with the numerical integration? Why we become in trouble with the numerical integration?

Because of the constraints.
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Introduction : ‘ Introduction
Why we become in trouble with the numerical integration? Why we become in trouble with the numerical integration?
Because of the constraints. Because of the constraints.

hidden constraints hidden constraints
= instabilities, oszillations = instabilities, oszillations
= convergence problems, = convergence problems,
= order reduction of numerical al- = order reduction of numerical al-
gorithms, gorithms,
= inconsistencies. = inconsistencieg

A numerical integration of DAEs
consisting hidden constraints, in
general, is not to recommend.
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Why we become in trouble with the numerical integration? Why we become in trouble with the numerical integration?
Because of the constraints. Because of the constraints.

hidden constraints hidden constraints
= instabilities, oszillations = instabilities, oszillations
= convergence problems, = convergence problems,
= order reduction of numerical al- = order reduction of numerical al-
gorithms, gorithms,

inconsistencieg inconsistencieg

- We have to do ... - We have to do ...

somethin ..
ne Regularization
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%& Index Reduction via the d-Index Concept — Basic Idea % Index Reduction via the d-Index Concept — Example
d-Index = Differentiation Index —! Simple Pendulum | E—
equations of motion (d-index 3)

Classical Approach - Index Reduction via the d-Index Concept po= wn
p2 = v

Basic Idea of the d-Index Concept |———— mvy = —2p1A

mvy, = —mg —2pA

Replace the constraints by its 0 = pfEps— L2

derivatives and substitute differentiated
unknowns as far as possible. with the hidden constraints ...
. of level 1

0 = 2pivi+2povy
. of level 2
4
(P +p5)A

m

0 = 2 +2v3 —2vg—
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A Slmple Pendulum

d-index 2 formulation
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A Numerical Results
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d-index 2 formulation

pr = v

p2 = W
m\'/l = — 2p1>\
mvwn = —mg —2pxA

0 = 2pvi +2povy

with the hidden constraints ...
.. of level 1

4
0 = 2} +2v3 —2vg — — (pi+p)\

and removed constraints

0=pf+p5—L°

Index Reduction via the d-Index Concept — Example

—1 Simple Pendulum [ E—

d-index 1 formulation

pp = v

p2 = W
m\'/l = — 2p1)\
mv, = —mg —2pA

0 = 200 +2v) —2ng

4 5 2
—— A
m(P1 + Pz)

with no hidden constraints

Index Reduction via the d-Index Concept — Example

— Simple Pendulum | E—
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—! Simple Pendulum [ E—

d-index 1 formulation

pr = v

p2 = v
m\'/l = — 2p1)\
mvn = —mg —2pA

0 = 2 +2v§ —2wg

4. 5 2
——(p7 + p5)A
—(p1+p2)
with no hidden constraints

but removed constraints
0=pf+p;—L?

0 =2p1vi +2povy
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Index Reduction via the d-Index Concept — Example

A Numerical Results
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Index Reduction via the d-Index Concept — Summary

Index Reduction via the d-Index Concept — Example

—! Simple Pendulum [ —{ Numerical Results | E—

_ . Why we become in trouble with the numerical integration?
d-lndeX ]_ formulat|0n Positions « 10-°Constr. on pos. level
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%% Index Reduction via the d-Index Concept — Summary %% Index Reduction via the d-Index Concept — Summary
Why we become in trouble with the numerical integration? Why we become in trouble with the numerical integration?
Because of the constraints. Because of the constraints.
hidden constraints removed constraints hidden constraints removed constraints
= instabilities, oszillations = drift, since the solution is no = instabilities, oszillations = drift, since the solution is no
= convergence problems, longer restricted into the set of = convergence problems, longer restricted into the set of
= order reduction of numerical al- || consistency = order reduction of numerical al- || consistency
gorithms, gorithms,
= inconsistencies. = inconsistencies.

Up to now we dont have a regularization technique.
We only have an index reduction technique.
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