Numerical Analysis II
 Homework Sheet 1

No Exercises and No Theoretical Homework Tere will be a Lecture instead of the Tutorial on April 23

Programming Homework

Due: April 28 (first chance) or May 5 (second chance)
Attention: You can only submit your program on May 5 if you presented a programming approach on April 28!

Write a program that solves an ordinary differential equation $\dot{y}(t)=f(t, y(t)), y\left(t_{0}\right)=y_{0}$ on an interval $\left[t_{0}, t_{0}+a\right]$ using an explicit one-step method. Your program should be called with the line

$$
[h, t, u]=\operatorname{expode}(i, f u n, t 0, y 0, N, a)
$$

where the paramenter i indicates the method that is used ($i=1$ - Forward Euler, $i=2-$ Heun's method, $i=3$ - Collatz method).

Moreover, fun should be a Matlab function handle corresponding to the right hand side $f(t, y)$ of the differential equation. For each right hand side, you therefore need a file funct?.m which is called via

$$
[\mathrm{f}]=\mathrm{funct} ?(\mathrm{t}, \mathrm{y}),
$$

where $?=1,2$. It should be possible here for y and f to be vectors of \mathbb{R}^{m}.
The parameter $\mathrm{t} 0=t_{0}$ is the lower interval bound, $\mathrm{y} 0=y_{0} \in \mathbb{R}^{m}$ is the initial value, $\mathrm{N}=N$ is the number of (equidistant) grid points, and $\mathrm{a}=a$ is the interval length. The routine should return the (constant) step size $\mathrm{h}=h=a / N$, the vector of grid points $\mathrm{t}=\left[t_{0}, t_{1}, \ldots t_{N}\right]$, and the corresponding approximated solution $\mathrm{u}=\left[u_{0}, u_{1}, \ldots u_{N}\right]$.
To test your program, use the initial value problems

1. $\dot{y}(t)=-y \cos (t), \quad y(0)=1$

The solution is $y(t)=e^{-\sin (t)}$,
2. $\begin{array}{ll}\dot{y}_{1}=y_{2} & \text { with } \quad y_{1}(0)=\sin (1), \\ \dot{y}_{2}=-y_{1} e^{2 t}+y_{2} & \text { with } \quad y_{2}(0)=\cos (1)\end{array}$

The solution is $y_{1}=\sin \left(e^{t}\right), y_{2}=\cos \left(e^{t}\right) e^{t}$,
and approximate the solution for $a=2$ using $N=5,10,100,1000$ steps.
Make twelve plots: four rows for the different values of N and three columns for the test functions. Every plot should contain the errors $\mathbf{e}=\mathbf{e}=\left[e_{0}, e_{1}, \ldots, e_{N}\right]$, with $e_{i}=\left\|y\left(t_{i}\right)-\mathrm{u}(\mathrm{i})\right\|_{\infty}$, that are made in the approximated solutions for all three explicit one-step methods. Use a logarithmic scale on the y-axis. Give an interpretation of the results.

