Numerical Analysis II Homework Sheet 1

No Exercises and No Theoretical Homework Tere will be a Lecture instead of the Tutorial on April 23

Programming Homework Due: April 28 (first chance) or May 5 (second chance)

Attention: You can only submit your program on May 5 if you presented a programming approach on April 28!

Write a program that solves an ordinary differential equation $\dot{y}(t) = f(t, y(t)), y(t_0) = y_0$ on an interval $[t_0, t_0 + a]$ using an explicit one-step method. Your program should be called with the line

[h, t, u] = expode(i, fun, t0, y0, N, a),

where the parameter i indicates the method that is used (i=1 - Forward Euler, i=2 - Heun's method, i=3 - Collatz method).

Moreover, fun should be a MATLAB function handle corresponding to the right hand side f(t, y) of the differential equation. For each right hand side, you therefore need a file funct?.m which is called via

$$[f] = funct?(t, y),$$

where ? = 1, 2. It should be possible here for y and f to be vectors of \mathbb{R}^m .

The parameter $t0 = t_0$ is the lower interval bound, $y0 = y_0 \in \mathbb{R}^m$ is the initial value, $\mathbb{N} = N$ is the number of (equidistant) grid points, and $\mathbf{a} = a$ is the interval length. The routine should return the (constant) step size $\mathbf{h} = h = a/N$, the vector of grid points $\mathbf{t} = [t_0, t_1, \dots, t_N]$, and the corresponding approximated solution $\mathbf{u} = [u_0, u_1, \dots, u_N]$.

To test your program, use the initial value problems

- 1. $\dot{y}(t) = -y\cos(t), \quad y(0) = 1$ The solution is $y(t) = e^{-\sin(t)},$
- 2. $\dot{y}_1 = y_2$ with $y_1(0) = \sin(1)$, $\dot{y}_2 = -y_1 e^{2t} + y_2$ with $y_2(0) = \cos(1)$ The solution is $y_1 = \sin(e^t)$, $y_2 = \cos(e^t)e^t$,

and approximate the solution for a = 2 using N = 5, 10, 100, 1000 steps.

Make twelve plots: four rows for the different values of N and three columns for the test functions. Every plot should contain the errors $\mathbf{e} = \mathbf{e} = [e_0, e_1, \dots, e_N]$, with $e_i = ||y(t_i) - \mathbf{u}(\mathbf{i})||_{\infty}$, that are made in the approximated solutions for all three explicit one-step methods. Use a logarithmic scale on the y-axis. Give an interpretation of the results.