
Technische Universität Berlin Summer Term 2014
Fakultät II - Mathematik und Naturwissenschaften
Institut für Mathematik
Andreas Steinbrecher, Jeroen Stolwijk

Numerical Analysis II
Homework Sheet 3

Exercises
Tutorial on May 5

1. Problem
Give all Runge-Kutta-Methods with consistency order p ≥ 2 that have the following Butcher array:

0
c2 c2
c3 0 c3

0 0 1

.

2. Problem
Explain the ideas of Richardson extrapolation and embedded Runge-Kutta-Methods. Moreover, apply
these two methods on the test equation ẏ(t) = y(t), y(0) = 1, with step size h = 0.1. Use the forward Euler
scheme for the Richardson extrapolation and both forward Euler and Heun’s method in the embedded
Runge-Kutta-Method.

3. Problem
Show that Collatz’ method can be interpreted as two Euler steps with step size h/2, followed by a
Richardson extrapolation.

Theoretical Homework
Due: May 13, during the lecture

1. Problem (10 Points)
Consider the two test problems

(a)

ẏ(t) =

[
0 −1
1 0

]
y(t), y(0) =

[
1
0

]
, with exact solution y(t) =

[
cos(t)
sin(t)

]
,

(b)

ẏ(t) =

[
0 −1
1 0

]
y(t), y(0) =

1√
2

[
1
1

]
, with exact solution y(t) =

1√
2

[
cos(t)− sin(t)
cos(t) + sin(t)

]
.

For each test problem, compute two steps using the Richardson extrapolation from the lecture, i.e. com-
pute uh, uh/2, u2h/2, the estimated truncation error τ̃ , and the extrapolation w for two steps of each test
problem. To start the second step, use the previously computed u2h/2 for each test problem.
For your computations, use the forward Euler method, the step size 0.1 (thus, h/2 = 0.05), and 4-digit
precision arithmetic i.e. use the numbers 0.0000,±0.0001,±0.0002, . . . ,±0.9999,±1.0000.
Compare the values you calculated to the exact solutions of the test problems. Is the τ̃ you received
an accurate estimate for the error made in each step? Explain the difference in the components of the
estimated truncation error! Does the size of the estimated truncation error justify different step sizes for
the two test problems?

2. Problem (5 Points)
Consider again the test problems (a) and (b). For each test problem, estimate the trucation error of uh
(the same uh that you previously computed using forward Euler).
This time, use Heun’s method (consistent of order 2) to get the ûh defined in the lecture to compute the
estimate τ̃ . Don’t forget to do two steps for each test problem and compare your results to the Richardson
extrapolation.

Total Points: 15



Programming Homework
Due: May 12 (first chance) or May 19 (second chance)

Attention: You can only submit your program on May 19 if you
presented a programming approach on May 12!

Write a program that solves an ordinary differential equation ẏ(t) = f(t, y(t)), y(t0) = y0 on an interval
[t0, t0 + a] using an embedded Runge-Kutta method with step size control. The method should be defined by
a general Butcher array of the form

0
α2 β2,1
...

...
. . .

αs βs,1 . . . βs,s−1

γ
(1)
1 . . . γ

(1)
s−1 γ

(1)
s

γ
(2)
1 . . . γ

(2)
s−1 γ

(2)
s

and be called with the line
[h, t, u] = embrk(fun, but, t0, y0, h0, a, p, eps).

Here, fun should be a Matlab function handle corresponding to the right hand side f(t, y) of the differential
equation. It should also be possible for y and f to be vectors of Rn.
Furthermore, but should be a Butcher array generated by the routine

[but] = butcher(i),

where the parameter i determines the size and shape of the array. For i=1, you should get the Butcher array
of the Runge-Kutta-Fehlberg 2(3) method

0
1 1

1/2 1/4 1/4
1/2 1/2
1/6 1/6 4/6

and i=2 should give the Runge-Kutta-Fehlberg 4(5) method printed on the next page. It should also be possible
to call your program with a Butcher array of arbitrary size.
The parameter t0 = t0 is the lower interval bound, y0 = y0 ∈ Rn is the initial value, h0 is the starting step
size, and a = a is the interval length. Further, p is the order of consistency of the lower order method and eps

is the tolerance for the relative and absolute error in each step.
Hence, for your computations use an appropriate formula for the error err(τ̃ , tol), where

toli = eps
[
1 +

∣∣(um)i∣∣ ].
The routine should return the vector of step sizes h = [h0, h1, . . . , hN−1], the vector of grid points t =
[t0, t1, . . . , tN ], and the corresponding approximated solution u = [u0, u1, . . . , uN ].
Compare the two methods using the test problems

1. ẏ(t) = 2y(t)− et, y(0) = 2, t ∈ [0, 1],
with exact solution y(t) = et + e2t,

2. ẏ(t) = − tan(t)y(t), y(0) = 1, t ∈ [0, 6],
with exact solution y(t) = cos(t),

3. ẏ(t) = − tan
(

1
1.05−t

)
y(t)

(1.05−t)2 , y(0) = cos(1), t ∈ [0, 1],

with exact solution y(t) = cos
(

1
1.05−t

)
.

Run both methods on each test problem and experiment with varying the paramenters h0,eps ∈ {10−k | k =
1, 2, 3, 4, 5} and plot the computed approximations in graphs alongside the exact solutions in a way that makes
the number of time steps / grid points visible. Explain the accumulation of grid points in some parts of the
graphs! How can the behavior for h0= 0.001 and eps = 0.1 be explained?

Last updated on May 6, 2014.



Runge-Kutta-Fehlberg 4(5):

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197
1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40
25/216 0 1408/2565 2197/4104 −1/5 0
16/135 0 6656/12825 28561/56430 −9/50 2/55


