Numerical Analysis II
 Homework Sheet 5

Exercises
 Tutorial on May 19

1. Problem

Compare the stability regions of Heun's method and the implicit trapezoidal rule. Which method is better for stiff problems?

2. Problem

Give an overview of the idea behind extrapolation methods.

3. Problem

Compute the method that extrapolates the forward Euler method with the sequence $\left(n_{1}, n_{2}\right)=(1,3)$ using the Neville-Aitken scheme. Is this a Runge-Kutta-method? What is its order of consistency?

Theoretical Homework
 Due: May 27, during the lecture

1. Problem

Let $f(t, y)$ be sufficiently smooth. Consider the value $T_{3,3}$ from the lecture, that is obtained by extrapolating the forward Euler method using the sequence $\left(n_{i}\right)_{i=1}^{3}=(1,2,3)$. What method does $T_{3,3}$ correspond to? Is it a Runge-Kutta method? If so, give its order, its stage, and its Butcher tableau.

2. Problem

Compute the stability function of the Hammer \& Hollingsworth method

$$
\begin{array}{c|cc}
0 & 0 & 0 \\
2 / 3 & 1 / 3 & 1 / 3 \\
\hline & 1 / 4 & 3 / 4
\end{array}
$$

and plot its stability region with Matlab. Is this method $\mathrm{A}, \mathrm{A}(\alpha)$, or $\mathrm{A}(0)$-stable?
3. Problem
(7 Points)
Consider the method that is received by taking two steps of Heun's method using the step size $h / 2$ and then applying a Richardson extrapolation. Compute the stability function of that method and plot the stability region using Matlab. Is it a Runge-Kutta method?

Programming Homework

Due: May 22 (first chance) or June 2 (second chance)
Attention: You can only submit your program on June 2 if you presented a programming approach on May 22!

Write a program that solves an ordinary differential equation $\dot{y}(t)=f(t, y(t)), y\left(t_{0}\right)=y_{0}$, on an interval $\left[t_{0}, t_{0}+a\right]$ using an extrapolation method. Your function should be called with the line

$$
[\mathrm{h}, \mathrm{t}, \mathrm{u}]=\operatorname{extrapol}(\mathrm{fun}, \mathrm{t} 0, \mathrm{y} 0, \mathrm{~N}, \mathrm{a}, \mathrm{p}, \mathrm{k}) .
$$

Here, fun should be a Matlab function handle corresponding to the right hand side $f(t, y)$ of the differential equation. It should also be possible for y and f to be vectors of \mathbb{R}^{n}. The parameter $t 0=t_{0}$ is the lower interval bound, $\mathrm{y} 0=y_{0} \in \mathbb{R}^{n}$ is the initial value, N is the number of steps, and $\mathrm{a}=a$ is the interval length. Further, p is the order of consistency of the used basic method and k is the number of extrapolation stages.
The routine should return the constant step size $h=a / \mathrm{N}$, the vector of grid points $\mathrm{t}=\left[t_{0}, t_{1}, \ldots, t_{N}\right]$, and the corresponding approximated solution $\mathrm{u}=\left[u_{0}, u_{1}, \ldots, u_{N}\right]$.
It should be possible to choose the parameter p from $1,2,3,4$ where you get the basic methods $\mathrm{p}=1-$ forward Euler, $p=2-$ Heun's method, $p=3-$ Simpson's rule (see homework sheet 4), and $p=4-$ classical RK4 (see the document ExpRKMethods.pdf on the website). For each step performed using the basic method, compute $k-1$ additional approximations of u_{m+1} using the same basic method but n_{i} steps with the step size h / n_{i}, where $n_{i}=1,2,5,10,20,40,80,160,320,640, \ldots$. Having these k approximations of u_{m+1} for the step sizes $h / n_{1}, \ldots, h / n_{k}$, your program should then extrapolate these values of u_{m+1} to the step size $h=0$. Hence, your program should include the special case of no extrapolation for $\mathrm{k}=1$.
The extrapolation itself should be performed by using the Neville-Aitken scheme for $p=1$ and the linear system involving the Vandermode-like matrix from the lecture otherwise.
To test your program, use the initial value problems

1. $\dot{y}(t)=2 y(t)-e^{t}, \quad y(0)=2, \quad t \in[0,1]$, with exact solution $y(t)=e^{t}+e^{2 t}$,
2. $\dot{y}(t)=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right] y(t), \quad y(0)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, \quad t \in[0,1]$,
with exact solution $y(t)=\frac{1}{2}\left[\begin{array}{c}1 \\ -1\end{array}\right] e^{3 t}+\frac{1}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{t}$,
3. $\dot{y}(t)=-\tan (t) y(t), \quad y(0)=1, \quad t \in[0,6]$,
with exact solution $y(t)=\cos (t)$.
Run your methods on each test problem and compare your approximations to the exact solutions using $N=$ $5,10,20,50,100$, and k being less than or equal to 10 . Compare the lower order methods with more extrapolation stages to the higher order methods with fewer extrapolation stages. From log-log plots, what can you infer about the order of consistency of an extrapolation method with k extrapolation stages and a p-th order consistent basic method?
