Technische Universitat Berlin Summer Term 2014
Fakultit IT - Mathematik und Naturwissenschaften

Institut fir Mathematik

Andreas Steinbrecher, Jeroen Stolwijk

Numerical Analysis 11
Homework Sheet 7

Exercises
Tutorial on June 2

1. Problem
Prove the following theorem:

Theorem. Multi-step methods of the type (r,1), i.e.

- k=r o T 4s -7
Ut = Umr—t =1 Y Bif (bmtisumsi), where ;= I ——ds
i=0 -

=gz Y
are consistent of order (at least) p =1+ 1.

Hint: When estimating the truncation error, you will need to use that the f3; are determined by an
interpolating polynomial, whose error in each point is given by some formula (e.g. Numerical Analysis I).

2. Problem
Consider the implicit two-step method

Um+-2 + QUm41 = h (ﬂof(tm, um) + Blf(tm+17 uerl) + 52f(tm+2a um+2)) (1)

and choose the coefficients such that it is consistent of order p = 2. Start with the definition of the local
discretization error 7(t, h, f) and use Taylor series expansions.

3. Problem
Consider again the implicit two-step method (1). Can we choose the coefficients such that we obtain the
order of consistency p = 3?7

Hint: Use a theorem given in the lecture.

Theoretical Homework
Due: June 10, during the lecture

1. Problem (12 Points)
Determine for k£ = 2 all linear multi-step methods with consistency order p = 2. Start with the definition
of the local discretization error 7(t, h, f) and use Taylor series expansions.

2. Problem (8 Points)
Consider the multi-step method

U3 + Qalmi2 + QUm = B(B1 f (tmt1, Um1) + Bof (Emt2, Umt2) + B3 f (Em+3, Um+3))-

Determine the coefficients ayg, as, 81, B2, and B3, such that the maximum order of consistency is achieved.

Hint: Use a theorem given in the lecture.

Total Points: 20

Programming Homework
Due: June 16 (first chance) or June 23 (second chance)
Attention: You can only submit your program on June 23 if you
presented a programming approach on June 16!

Write a program that solves an ordinary differential equation ¢(¢) = f(t,y(t)), y(to) = yo, on an interval
[to, to + a] using the Gragg-Bulirsch-Stoer method. Your function should be called with the line

[h, t,u] = gragg(fun, t0,y0,k, a,N).

Here, fun should be a MATLAB function handle corresponding to the right hand side f(¢,y) of the differential
equation. It should also be possible for y and £ to be vectors of R™. The parameter t0 = ¢ is the lower interval
bound, yO = yo € R" is the initial value, k is the number of steps, a = a is the interval length, and N is the
number of extrapolation stages.

The routine should return the basic step size H = h = a/k, the vector of grid points t = [to, t1, ..., {k], and the
corresponding approximated solution u = [ug, u1, ..., ug.

You should compute the values yo = So, S1, 52, ...,Sk by

Ug = Yo

= o+ Hf(to, o)
Umt1 = Um—1+ 2H f(tm, Um), m=12,...k
Sm = (Um—1 42U + Umy1)/4, m=1,2,... k.

In order to extrapolate (given N > 1, else we have no extrapolation), for each step you should also compute
additional approximations using the local step sizes h; = H/2""! for i = 1,2,..., N, followed by computing
the extrapolated value 1,11 using the Neville-Aitken scheme. Note that the sequence for the extrapolation is
hence given by (n;)N, = (2= ,.

To test your program, use the initial value problems

Log(t) =2y(t) — e, y(0)=2, telo,1],
with exact solution y(t) = et + €2,

200 =2 5w, w0 =nor, tepa,

with exact solution y(t) = 1 [_11} e+ 1 [1} et,
3. y(t) = _tan(t)y(t)v y(O) =1, te [073}7
with exact solution y(t) = cos(t),

and compare the method without extrapolation to the one with extrapolation in terms of accuracy and arith-
metic complexity. For the case without extrapolation (N = 1), use the numbers of steps k = 10 - 2=! for
1 =1,2,...,10. For the case with extrapolation (N > 1), use the fixed number of basic steps k = 10 and take
N approximation stages for N = 2,3,...,10 (i.e., use N different local step sizes — the h; defined above — for
each value of N). How can you explain your program’s behavior for the third test problem?

Further, compare both methods to the classical Runge-Kutta method (without extrapolation) that you imple-
mented in the last programming assignment using again the numbers of steps k = 10-2°~! for i = 1,2,...,10.

Last updated on May 23, 2014.

