
Technische Universität Berlin Summer Term 2014
Fakultät II - Mathematik und Naturwissenschaften
Institut für Mathematik
Andreas Steinbrecher, Jeroen Stolwijk

Numerical Analysis II
Homework Sheet 7

Exercises
Tutorial on June 2

1. Problem
Prove the following theorem:

Theorem. Multi-step methods of the type (r, l), i.e.

um+k − um+r−l = h

r∑
i=0

βif(tm+i, um+i), where βi =

∫ k−r

−l

r∏
j=0,j 6=i

r + s− j
i− j

ds

are consistent of order (at least) p = r + 1.

Hint: When estimating the truncation error, you will need to use that the βi are determined by an
interpolating polynomial, whose error in each point is given by some formula (e.g. Numerical Analysis I).

2. Problem
Consider the implicit two-step method

um+2 + αum+1 = h (β0f(tm, um) + β1f(tm+1, um+1) + β2f(tm+2, um+2)) (1)

and choose the coefficients such that it is consistent of order p = 2. Start with the definition of the local
discretization error τ(t, h, f) and use Taylor series expansions.

3. Problem
Consider again the implicit two-step method (1). Can we choose the coefficients such that we obtain the
order of consistency p = 3?

Hint: Use a theorem given in the lecture.

Theoretical Homework
Due: June 10, during the lecture

1. Problem (12 Points)
Determine for k = 2 all linear multi-step methods with consistency order p = 2. Start with the definition
of the local discretization error τ(t, h, f) and use Taylor series expansions.

2. Problem (8 Points)
Consider the multi-step method

um+3 + α2um+2 + α0um = h(β1f(tm+1, um+1) + β2f(tm+2, um+2) + β3f(tm+3, um+3)).

Determine the coefficients α0, α2, β1, β2, and β3, such that the maximum order of consistency is achieved.

Hint: Use a theorem given in the lecture.

Total Points: 20



Programming Homework
Due: June 16 (first chance) or June 23 (second chance)

Attention: You can only submit your program on June 23 if you
presented a programming approach on June 16!

Write a program that solves an ordinary differential equation ẏ(t) = f(t, y(t)), y(t0) = y0, on an interval
[t0, t0 + a] using the Gragg-Bulirsch-Stoer method. Your function should be called with the line

[h, t, u] = gragg(fun, t0, y0, k, a, N).

Here, fun should be a Matlab function handle corresponding to the right hand side f(t, y) of the differential
equation. It should also be possible for y and f to be vectors of Rn. The parameter t0 = t0 is the lower interval
bound, y0 = y0 ∈ Rn is the initial value, k is the number of steps, a = a is the interval length, and N is the
number of extrapolation stages.
The routine should return the basic step size H = h = a/k, the vector of grid points t = [t0, t1, . . . , tk], and the
corresponding approximated solution u = [u0, u1, . . . , uk].
You should compute the values y0 = S0, S1, S2, . . . , Sk by

ũ0 = y0

ũ1 = ũ0 +Hf(t0, ũ0)

ũm+1 = ũm−1 + 2Hf(tm, ũm), m = 1, 2, . . . , k

Sm = (ũm−1 + 2ũm + ũm+1)/4, m = 1, 2, . . . , k.

In order to extrapolate (given N > 1, else we have no extrapolation), for each step you should also compute
additional approximations using the local step sizes hi = H/2i−1 for i = 1, 2, . . . , N , followed by computing
the extrapolated value ũm+1 using the Neville-Aitken scheme. Note that the sequence for the extrapolation is
hence given by (ni)

N
i=1 = (2i−1)Ni=1.

To test your program, use the initial value problems

1. ẏ(t) = 2y(t)− et, y(0) = 2, t ∈ [0, 1],
with exact solution y(t) = et + e2t,

2. ẏ(t) =

[
2 −1
−1 2

]
y(t), y(0) = [1 0]T , t ∈ [0, 1] ,

with exact solution y(t) = 1
2

[
1
−1

]
e3t + 1

2

[
1
1

]
et,

3. ẏ(t) = − tan(t)y(t), y(0) = 1, t ∈ [0, 3],
with exact solution y(t) = cos(t),

and compare the method without extrapolation to the one with extrapolation in terms of accuracy and arith-
metic complexity. For the case without extrapolation (N = 1), use the numbers of steps k = 10 · 2i−1 for
i = 1, 2, . . . , 10. For the case with extrapolation (N > 1), use the fixed number of basic steps k = 10 and take
N approximation stages for N = 2, 3, . . . , 10 (i.e., use N different local step sizes − the hi defined above − for
each value of N). How can you explain your program’s behavior for the third test problem?
Further, compare both methods to the classical Runge-Kutta method (without extrapolation) that you imple-
mented in the last programming assignment using again the numbers of steps k = 10 · 2i−1 for i = 1, 2, . . . , 10.

Last updated on May 23, 2014.


