Numerical Analysis II
 Homework Sheet 7

Exercises
 Tutorial on June 2

1. Problem

Prove the following theorem:
Theorem. Multi-step methods of the type (r, l), i.e.

$$
u_{m+k}-u_{m+r-l}=h \sum_{i=0}^{r} \beta_{i} f\left(t_{m+i}, u_{m+i}\right), \quad \text { where } \quad \beta_{i}=\int_{-l}^{k-r} \prod_{j=0, j \neq i}^{r} \frac{r+s-j}{i-j} d s
$$

are consistent of order (at least) $p=r+1$.
Hint: When estimating the truncation error, you will need to use that the β_{i} are determined by an interpolating polynomial, whose error in each point is given by some formula (e.g. Numerical Analysis I).

2. Problem

Consider the implicit two-step method

$$
\begin{equation*}
u_{m+2}+\alpha u_{m+1}=h\left(\beta_{0} f\left(t_{m}, u_{m}\right)+\beta_{1} f\left(t_{m+1}, u_{m+1}\right)+\beta_{2} f\left(t_{m+2}, u_{m+2}\right)\right) \tag{1}
\end{equation*}
$$

and choose the coefficients such that it is consistent of order $p=2$. Start with the definition of the local discretization error $\tau(t, h, f)$ and use Taylor series expansions.

3. Problem

Consider again the implicit two-step method (1). Can we choose the coefficients such that we obtain the order of consistency $p=3$?
Hint: Use a theorem given in the lecture.

Theoretical Homework
 Due: June 10, during the lecture

1. Problem

(12 Points)
Determine for $k=2$ all linear multi-step methods with consistency order $p=2$. Start with the definition of the local discretization error $\tau(t, h, f)$ and use Taylor series expansions.

2. Problem

(8 Points)
Consider the multi-step method

$$
u_{m+3}+\alpha_{2} u_{m+2}+\alpha_{0} u_{m}=h\left(\beta_{1} f\left(t_{m+1}, u_{m+1}\right)+\beta_{2} f\left(t_{m+2}, u_{m+2}\right)+\beta_{3} f\left(t_{m+3}, u_{m+3}\right)\right) .
$$

Determine the coefficients $\alpha_{0}, \alpha_{2}, \beta_{1}, \beta_{2}$, and β_{3}, such that the maximum order of consistency is achieved. Hint: Use a theorem given in the lecture.

Programming Homework
 Due: June 16 (first chance) or June 23 (second chance)

Attention: You can only submit your program on June 23 if you presented a programming approach on June 16!

Write a program that solves an ordinary differential equation $\dot{y}(t)=f(t, y(t)), y\left(t_{0}\right)=y_{0}$, on an interval $\left[t_{0}, t_{0}+a\right]$ using the Gragg-Bulirsch-Stoer method. Your function should be called with the line

$$
[\mathrm{h}, \mathrm{t}, \mathrm{u}]=\operatorname{gragg}(\mathrm{fun}, \mathrm{t} 0, \mathrm{y} 0, \mathrm{k}, \mathrm{a}, \mathrm{~N})
$$

Here, fun should be a Matlab function handle corresponding to the right hand side $f(t, y)$ of the differential equation. It should also be possible for y and f to be vectors of \mathbb{R}^{n}. The parameter $t 0=t_{0}$ is the lower interval bound, $\mathrm{y} 0=y_{0} \in \mathbb{R}^{n}$ is the initial value, k is the number of steps, $\mathrm{a}=a$ is the interval length, and N is the number of extrapolation stages.
The routine should return the basic step size $H=\mathrm{h}=\mathrm{a} / \mathrm{k}$, the vector of grid points $\mathrm{t}=\left[t_{0}, t_{1}, \ldots, t_{k}\right]$, and the corresponding approximated solution $\mathrm{u}=\left[u_{0}, u_{1}, \ldots, u_{k}\right]$.
You should compute the values $y_{0}=S_{0}, S_{1}, S_{2}, \ldots, S_{k}$ by

$$
\begin{array}{rlrl}
\tilde{u}_{0} & =y_{0} \\
\tilde{u}_{1} & =\tilde{u}_{0}+H f\left(t_{0}, \tilde{u}_{0}\right) & \\
\tilde{u}_{m+1} & =\tilde{u}_{m-1}+2 H f\left(t_{m}, \tilde{u}_{m}\right), & & m=1,2, \ldots, k \\
S_{m} & =\left(\tilde{u}_{m-1}+2 \tilde{u}_{m}+\tilde{u}_{m+1}\right) / 4, & m=1,2, \ldots, k .
\end{array}
$$

In order to extrapolate (given $N>1$, else we have no extrapolation), for each step you should also compute additional approximations using the local step sizes $h_{i}=H / 2^{i-1}$ for $i=1,2, \ldots, N$, followed by computing the extrapolated value \tilde{u}_{m+1} using the Neville-Aitken scheme. Note that the sequence for the extrapolation is hence given by $\left(n_{i}\right)_{i=1}^{N}=\left(2^{i-1}\right)_{i=1}^{N}$.
To test your program, use the initial value problems

1. $\dot{y}(t)=2 y(t)-e^{t}, \quad y(0)=2, \quad t \in[0,1]$, with exact solution $y(t)=e^{t}+e^{2 t}$,
2. $\dot{y}(t)=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right] y(t), \quad y(0)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, \quad t \in[0,1]$, with exact solution $y(t)=\frac{1}{2}\left[\begin{array}{c}1 \\ -1\end{array}\right] e^{3 t}+\frac{1}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{t}$,
3. $\dot{y}(t)=-\tan (t) y(t), \quad y(0)=1, \quad t \in[0,3]$, with exact solution $y(t)=\cos (t)$,
and compare the method without extrapolation to the one with extrapolation in terms of accuracy and arithmetic complexity. For the case without extrapolation $(N=1)$, use the numbers of steps $k=10 \cdot 2^{i-1}$ for $i=1,2, \ldots, 10$. For the case with extrapolation $(N>1)$, use the fixed number of basic steps $k=10$ and take N approximation stages for $N=2,3, \ldots, 10$ (i.e., use N different local step sizes - the h_{i} defined above - for each value of N). How can you explain your program's behavior for the third test problem?
Further, compare both methods to the classical Runge-Kutta method (without extrapolation) that you implemented in the last programming assignment using again the numbers of steps $k=10 \cdot 2^{i-1}$ for $i=1,2, \ldots, 10$.
