Numerical Analysis II
 Homework Sheet 8

Exercises
 Tutorial on June 16

1. Problem

Show that the set of solutions to the homogeneous difference equation $u_{m+k}+\sum_{i=0}^{k-1} \gamma_{i} u_{m+i}=0$ is a vector space.

2. Problem

Prove the following Theorem.
Theorem (Discrete Duhamel's Principle). The solution to the inhomogeneous difference equation

$$
\left\{\begin{array}{l}
u_{m+2}+\gamma_{1} u_{m+1}+\gamma_{0} u_{m}=f_{m+2}, \quad m \geq 0 \\
u_{0}=0, \quad u_{1}=f_{1}
\end{array}\right.
$$

is given by $u_{m+2}=\sum_{j=0}^{m+1} q_{m+1}^{(j)}$, where $q_{m}^{(j)}$ is the solution of the homogeneous difference equation

$$
\left\{\begin{array}{l}
q_{m+2}^{(j)}+\gamma_{1} q_{m+1}^{(j)}+\gamma_{0} q_{m}^{(j)}=0, \quad m \geq j \\
q_{j}^{(j)}=f_{j+1}, \quad q_{j+1}^{(j)}=-\gamma_{1} f_{j+1}
\end{array}\right.
$$

for each $j=0,1,2, \ldots$

3. Problem

Solve the difference equation

$$
\left\{\begin{array}{l}
u_{m+2}-3 u_{m+1}+2 u_{m}=m+2, \quad m \geq 0 \\
u_{0}=0, \quad u_{1}=1
\end{array}\right.
$$

Theoretical Homework

Due: June 24, during the lecture

1. Problem

(7 Points)
Solve the following linear difference equations
(a) $u_{m+2}-2 u_{m+1}-3 u_{m}=0, \quad u_{0}=0, \quad u_{1}=1$,
(b) $u_{m+2}-4 u_{m+1}+3 u_{m}=m+2, \quad u_{0}=0, \quad u_{1}=1$.
2. Problem
(7 Points)
Consider the inhomogeneous linear difference equation

$$
u_{m+k}+\gamma_{k-1} u_{m+k-1}+\cdots+\gamma_{0} u_{m}=f_{m}
$$

where $u_{0}, \ldots, u_{k-1}, f_{m} \in \mathbb{R}$ are given for all $m \in \mathbb{N}$.
(a) Show that the above difference equation can be transformed to a system of linear difference equations of order one of the form

$$
U_{m+1}=A U_{m}+F_{m}
$$

How are U_{m}, A, and F_{m} defined?
(b) Determine a general formula for the solution U_{m} depending on U_{0} using (a).
(c) Solve the difference equation $u_{m+2}-4 u_{m+1}-5 u_{m}=1$, $u_{0}=0$, $u_{1}=1$ using (b).

3. Problem

Show that the characteristic polynomial $p(\lambda)=\operatorname{det}(\lambda I-M)$ of the $k \times k$ matrix

$$
M=\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & 0 & 1 \\
-\alpha_{0} & \cdots & -\alpha_{k-2} & -\alpha_{k-1}
\end{array}\right]
$$

is given by $p(\lambda)=\lambda^{k}+\alpha_{k-1} \lambda^{k-1}+\ldots+\alpha_{1} \lambda+\alpha_{0}$.
Total Points: 20

