Numerical Analysis II
 Homework Sheet 9

Exercises
 Tutorial on June 23

1. Problem

Solve the homogeneous linear difference equation $u_{m+2}-u_{m+1}-u_{m}=0, u_{0}=0, u_{1}=1$. How is this sequence called?

2. Problem

Determine the parameter α in the multi-step method

$$
u_{m+2}-(1+\alpha) u_{m+1}+\alpha u_{m}=\frac{h}{12}\left((5+\alpha) f_{m+2}+8(1-\alpha) f_{m+1}-(1+5 \alpha) f_{m}\right)
$$

such that the method is zero-stable. What is the maximal order of consistency that we can achieve?

3. Problem

By the first Dahlquist barrier, an explicit, zero-stable linear k-step method is at most consistent of order k. Consider the explicit two-step method

$$
\sum_{l=0}^{2} \alpha_{l} u_{m+l}=h \sum_{l=0}^{1} \beta_{l} f_{m+l}
$$

and show that if this method is zero-stable, its order cannot exceed 2, i.e., prove that the first Dahlquist barrier holds here.

Theoretical Homework

Due: July 1, during the lecture

1. Problem

(9 Points)
Determine the largest possible interval $I \subseteq \mathbb{R}$ such that the explicit, linear three-step method

$$
u_{m+3}+\alpha\left(u_{m+2}-u_{m+1}\right)-u_{m}=\frac{h}{2}(3+\alpha)\left(f_{m+2}+f_{m+1}\right)
$$

is zero-stable for all $\alpha \in I$. Further show that there is an α, for which the above method is consistent of order $p=4$, but that a zero-stable method of the above type is at most of order $p=2$.

2. Problem

(8 Points)
Consider the difference equation

$$
u_{m+2}-2 z u_{m+1}-u_{m}=0
$$

with $z \in \mathbb{C}$, that corresponds to the explicit midpoint rule. Compute the region $G \subseteq \mathbb{C}$ such that the solution of the difference equation is bounded for all $z \in G$. Although a Matlab solution (code and plot) will be accepted, full points will only be awarded for an algebraic solution of this problem.

3. Problem

(8 Points)
Is a consistent linear two-step method with $\alpha_{0}=\beta_{0}$ A-stable? Explain why. The use of Matlab is allowed if the code and the plots are provided.

Programming Homework
 Due: June 30 (first chance) or July 7 (second chance)

Attention: You can only submit your program on July 7 if you presented a programming approach on June 30!

Write a program that solves an ordinary differential equation $\dot{y}(t)=f(t, y(t)), y\left(t_{0}\right)=y_{0}$ on an interval $\left[t_{0}, t_{0}+a\right]$ using a predictor-corrector method.

Idea: The aim of a predictor-corrector method is to combine an explicit with an implicit multi-step method without solving implicit equations. Hence, for each step an explicit method 'predictor' is used to compute a first approximation, e.g.

$$
u_{m+3}^{(0)}=u_{m+2}+\frac{h}{12}\left(23 f_{m+2}-16 f_{m+1}+5 f_{m}\right) \quad \text { (Adams-Bashforth) }
$$

and then an additional M approximations are computed with an implicit method 'corrector' using the 'old' value in the right hand side of the method, e.g.

$$
u_{m+3}^{(j)}=u_{m+2}+\frac{h}{24}\left(9 f\left(t_{m+3}, u_{m+3}^{(j-1)}\right)+19 f_{m+2}-5 f_{m+1}+f_{m}\right) \quad \text { (Adams-Moulton) }
$$

for $j=1, \ldots, M$. Before starting with the next step one would let $u_{m+3}:=u_{m+3}^{(M)}$ be the final approximation and evaluate $f_{m+3}:=f\left(t_{m+3}, u_{m+3}^{(M)}\right)$.

Write a routine that implements the above described Adams-Bashforth/Adams-Moulton method

$$
[\mathrm{h}, \mathrm{t}, \mathrm{u}]=\operatorname{adbaadmo}(\mathrm{fun}, \mathrm{t} 0, \mathrm{y} 0, \mathrm{~N}, \mathrm{a}, \mathrm{i})
$$

as well as another routine that uses the Nyström/Milne-Simpson method

$$
[\mathrm{h}, \mathrm{t}, \mathrm{u}]=\operatorname{nymisi}(\mathrm{fun}, \mathrm{t} 0, \mathrm{y} 0, \mathrm{~N}, \mathrm{a}, \mathrm{i})
$$

given by

$$
u_{m+3}=u_{m+1}+\frac{h}{3}\left(7 f_{m+2}-2 f_{m+1}+f_{m}\right) \quad \text { (Nyström) }
$$

and

$$
u_{m+3}=u_{m+1}+\frac{h}{3}\left(f_{m+3}+4 f_{m+2}+f_{m+1}\right) \quad \text { (Milne-Simpson) }
$$

Here, fun should be a Matlab function handle corresponding to the right hand side $f(t, y)$ of the differential equation. It should also be possible for y and f to be vectors of \mathbb{R}^{n}. The parameter $\mathrm{t} 0=t_{0}$ is the lower interval bound, $\mathrm{y} 0=y_{0} \in \mathbb{R}^{n}$ is the initial value, N is the number of steps, $\mathrm{a}=a$ is the interval length, and indicates the method used to compute a sufficient number of start-up steps. For i = 1, the Forward Euler method should be used and for $i=2$, you should take the classical Runge-Kutta method.
Further, the number of corrector steps is fixed to be $M=2$ in both routines. The routine should return the step size $\mathrm{h}=\mathrm{a} / \mathrm{N}$, the vector of grid points $\mathrm{t}=\left[t_{0}, t_{1}, \ldots, t_{N}\right]$, and the corresponding approximated solution $\mathrm{u}=\left[u_{0}, u_{1}, \ldots, u_{N}\right]$.
The methods are to be implemented such that the computational effort, in particular the number of evaluations of $f(t, y)$, is minimized.
To test your program, use the initial value problems

1. $\dot{y}(t)=2 y(t)-e^{t}, \quad y(0)=2, \quad t \in[0,1]$,
2. $\dot{y}(t)=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right] y(t), \quad y(0)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, \quad t \in[0,1]$,
3. $\dot{y}(t)=-\tan (t) y(t), \quad y(0)=1, \quad t \in[0,3]$,
and compare both routines for $i=1,2$ in terms of accuracy and computational complexity. In particular, make a log-lot plot of the error for the first test problem for all four methods and the classical Runge-Kutta method using the values $N=10,20,40,80,160,320$. Which methods show the best trade-off between complexity and accuracy?
