
Technische Universität Berlin Summer Term 2014
Fakultät II - Mathematik und Naturwissenschaften
Institut für Mathematik
Andreas Steinbrecher, Jeroen Stolwijk

Numerical Analysis II
Homework Sheet 9

Exercises
Tutorial on June 23

1. Problem
Solve the homogeneous linear difference equation um+2 − um+1 − um = 0, u0 = 0, u1 = 1. How is this
sequence called?

2. Problem
Determine the parameter α in the multi-step method

um+2 − (1 + α)um+1 + αum =
h

12
((5 + α)fm+2 + 8(1− α)fm+1 − (1 + 5α)fm)

such that the method is zero-stable. What is the maximal order of consistency that we can achieve?

3. Problem
By the first Dahlquist barrier, an explicit, zero-stable linear k-step method is at most consistent of order
k. Consider the explicit two-step method

2∑
l=0

αlum+l = h

1∑
l=0

βlfm+l

and show that if this method is zero-stable, its order cannot exceed 2, i.e., prove that the first Dahlquist
barrier holds here.

Theoretical Homework
Due: July 1, during the lecture

1. Problem (9 Points)
Determine the largest possible interval I ⊆ R such that the explicit, linear three-step method

um+3 + α(um+2 − um+1)− um =
h

2
(3 + α)(fm+2 + fm+1)

is zero-stable for all α ∈ I. Further show that there is an α, for which the above method is consistent of
order p = 4, but that a zero-stable method of the above type is at most of order p = 2.

2. Problem (8 Points)
Consider the difference equation

um+2 − 2zum+1 − um = 0

with z ∈ C, that corresponds to the explicit midpoint rule. Compute the region G ⊆ C such that the
solution of the difference equation is bounded for all z ∈ G. Although a Matlab solution (code and plot)
will be accepted, full points will only be awarded for an algebraic solution of this problem.

3. Problem (8 Points)
Is a consistent linear two-step method with α0 = β0 A-stable? Explain why. The use of Matlab is
allowed if the code and the plots are provided.

Total Points: 25



Programming Homework
Due: June 30 (first chance) or July 7 (second chance)

Attention: You can only submit your program on July 7 if you
presented a programming approach on June 30!

Write a program that solves an ordinary differential equation ẏ(t) = f(t, y(t)), y(t0) = y0 on an interval
[t0, t0 + a] using a predictor-corrector method.

Idea: The aim of a predictor-corrector method is to combine an explicit with an implicit multi-step method
without solving implicit equations. Hence, for each step an explicit method ’predictor’ is used to compute a first
approximation, e.g.

u
(0)
m+3 = um+2 +

h

12

(
23fm+2 − 16fm+1 + 5fm

)
(Adams-Bashforth)

and then an additional M approximations are computed with an implicit method ’corrector’ using the ’old’ value
in the right hand side of the method, e.g.

u
(j)
m+3 = um+2 +

h

24

(
9f(tm+3, u

(j−1)
m+3 ) + 19fm+2 − 5fm+1 + fm

)
(Adams-Moulton)

for j = 1, . . . ,M . Before starting with the next step one would let um+3 := u
(M)
m+3 be the final approximation

and evaluate fm+3 := f(tm+3, u
(M)
m+3).

Write a routine that implements the above described Adams-Bashforth/Adams-Moulton method

[h, t, u] = adbaadmo(fun, t0, y0, N, a, i)

as well as another routine that uses the Nyström/Milne-Simpson method

[h, t, u] = nymisi(fun, t0, y0, N, a, i)

given by

um+3 = um+1 +
h

3

(
7fm+2 − 2fm+1 + fm

)
(Nyström)

and

um+3 = um+1 +
h

3

(
fm+3 + 4fm+2 + fm+1

)
(Milne-Simpson).

Here, fun should be a Matlab function handle corresponding to the right hand side f(t, y) of the differential
equation. It should also be possible for y and f to be vectors of Rn. The parameter t0 = t0 is the lower interval
bound, y0 = y0 ∈ Rn is the initial value, N is the number of steps, a = a is the interval length, and i indicates
the method used to compute a sufficient number of start-up steps. For i = 1, the Forward Euler method should
be used and for i = 2, you should take the classical Runge-Kutta method.
Further, the number of corrector steps is fixed to be M = 2 in both routines. The routine should return the
step size h = a/N, the vector of grid points t = [t0, t1, . . . , tN ], and the corresponding approximated solution
u = [u0, u1, . . . , uN ].
The methods are to be implemented such that the computational effort, in particular the number of evaluations
of f(t, y), is minimized.
To test your program, use the initial value problems

1. ẏ(t) = 2y(t)− et, y(0) = 2, t ∈ [0, 1],

2. ẏ(t) =

[
2 −1
−1 2

]
y(t), y(0) = [1 0]T , t ∈ [0, 1] ,

3. ẏ(t) = − tan(t)y(t), y(0) = 1, t ∈ [0, 3],

and compare both routines for i = 1, 2 in terms of accuracy and computational complexity. In particular, make
a log-lot plot of the error for the first test problem for all four methods and the classical Runge-Kutta method
using the values N = 10, 20, 40, 80, 160, 320. Which methods show the best trade-off between complexity and
accuracy?

Last updated on June 20, 2014.


