# Numerical Analysis II <br> Homework Sheet 11 

## Exercises <br> Tutorial on July 7

## 1. Problem

Derive a shooting method for the physical problem of the trajectory of a projectile and solve this problem.

## 2. Problem

Derive a shooting method for the linear boundary value problem

$$
\left\{\begin{array}{l}
(\mathcal{L} y)(x):=-y^{\prime \prime}(x)+b(x) y^{\prime}(x)+c(x) y(x)=f(x) \\
\quad y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

If the used initial value problem solver is convergent of order $p$, is the shooting method also convergent? If so, of what order?

## 3. Problem

In order to solve the boundary value problem $y^{\prime}(x)=2 y(x)+1, x \in[0,1]$, with the terminal condition $y(1)=-1 / 2-e^{2} / 2$, split up the interval $[0,1]$ into $m$ equidistant intervals and construct the system $F(s)=0$ that is obtained by applying a multiple shooting method. The initial value problems on the smaller intervals are to be solved exactly. Show that $F(s)=0$ is uniquely solvable.

## No Theoretical Homework

