Institut für Mathematik

Dozent und Übungsleiter: Arnd Rösch

Vektoranalysis

Partielle Differentialgleichungen - 2. Übung

- 1. (Vorrechenaufgabe) Zeigen Sie, daß $\vec{v} = (z^2 + y^2, 2xy, 2xz)$ ein Potentialfeld ist und berechnen Sie das Potential U mit U(1,1,1)=0!
- 2. (Vorrechenaufgabe) Für welches λ ist $\vec{v} = (x^2 + 5\lambda y + 3yz, 5x + 3\lambda xz - 2, 2xy + \lambda xy - 4z)$ Gradient eines Skalarfeldes U?
- 3. Berechnen Sie!
- a) ∇r

- b) $\nabla \frac{1}{\pi}$ c) $\nabla f(r)$ d) $\nabla (\vec{a} \cdot \vec{r})$

- e) $\nabla \cdot \vec{r}$ f) $\nabla \times \vec{r}$ g) $(\vec{a} \cdot \nabla)\vec{r}$ h) $(\vec{r} \cdot \nabla)\vec{a}$

- i) $\nabla \cdot \frac{\vec{r}}{r}$ j) $\nabla \cdot (r^n(\vec{a} \cdot \vec{r})\vec{r})$ k) $\nabla \cdot ((\vec{a} \times \vec{r})r^n)$ l) $\nabla (r^2(\vec{a} \cdot \vec{r}) \ln r)$

- m) $\nabla \times (\vec{r}r^n)$ n) $\nabla \times (\vec{a} \times \vec{r})$ o) $\nabla \times (\vec{r}r^n(\vec{a} \cdot \vec{r}))$ p) div grad $\frac{1}{r}$

- q) $\nabla \cdot (\nabla \ln r)$ r) $\nabla (\nabla \cdot \vec{r})$ s) $\nabla (\nabla \cdot (a \times r^n \vec{r}))$ t) $\nabla \times (\nabla \times r^2 \vec{a})$
- 4. Beweisen Sie a) rot grad $U = \nabla \times \nabla U = \vec{0}$ b) div rot $\vec{v} = \nabla \cdot (\nabla \times \vec{v}) = 0$!
- 5. (Vorrechenaufgabe) Überführen Sie die folgenden Gleichungen in Kurz- bzw. Langschreibweise:
 - a) $u_{xyz} + u_{xxxy} + u_{zyz} = 0$,
 - b) $D_x^{(0,2,2)}u + D_x^{(3,0,0)}u + D_x^{(1,2,1)}u = 0.$
- 6. (Vorrechenaufgabe) Sind folgende PDEs linear, semilinear, quasilinear oder nichtlinear?
 - a) $(u_{xyz})^2 + u_{xxxy} + u \cdot u_{zyz} = 0$,
 - b) $u_{xyz} + x^3 u_{xx} + yz u_{xz} = 0.$
 - c) $u_x^3 + u_y + u_z^2 = 0$,
 - d) $uu_{xx} + u_{yy} = 0$.