Technische Universität Berlin Institut für Mathematik

Prof. Dr. Dr. h.c. Martin Grötschel
Andreas Bley
Benjamin Hiller

Exercise sheet 3

Deadline: Thursday, May 10th, 2007, 08:30 h in MA-313

Exercise 1:
4 points

a) Find a comb inequality which is violated by the point $x \in \mathbb{R}^{55}$ shown in (a).
b) Find a clique tree inequality which is violated by the point $x \in \mathbb{R}^{55}$ shown in (b).

Exercise 2:

4 points

Let (E, \mathcal{I}) be an independence system with rank function r and $F \subseteq E$. Prove the following fact: If the inequality $x(F) \leq r(F)$ defines a facet of $P_{\mathcal{I}}$, then F is closed and inseparable.

Exercise 3:

4 points

The following graph G on 8 nodes with 13 edges has no hamiltonian circuit. Prove this fact using polyhedral theory.

Hint: Define

$$
\operatorname{TSP}(G):=\operatorname{conv}\left\{\chi^{T} \in \mathbb{R}^{13} \mid T \text { hamiltonian circuit }\right\}
$$

and find a system of inequalities valid for $\operatorname{TSP}(G)$. Then show that this system has no solution using the Farkas Lemma.

Exercise 4:

4 points

Let C be a cycle of length $3 \leq k \leq n-1$ in D_{n} and consider the corresponding cycle inequality $x(C) \leq|C|-1$. Let (i, j) be a diagonal of C. Determine the coefficient $a_{i j}$ for lifting (i, j) into the cycle inequality.

