Technische Universität Berlin
Institut für Mathematik

ADM III - Advanced Methods for Integer Linear Programming Summer Term 2007

Prof. Dr. Dr. h.c. Martin Grötschel
Andreas Bley
Benjamin Hiller

Exercise sheet 5

Deadline: Thursday, May 31st, 2007, 08:30 h in MA-313

Exercise 1:

4 points
Given an undirected graph $G=(V, E)$, the corresponding stable set polytope $\operatorname{STAB}(G) \subseteq \mathbb{R}^{V}$ is defined as

$$
\begin{aligned}
\operatorname{STAB}(G) & :=\operatorname{conv}\left\{\chi^{S} \mid S \subseteq V \text { is a stable set }\right\} \\
& =\operatorname{conv}\left\{x \in\{0,1\}^{V} \mid x_{i}+x_{j} \leq 1 \quad \forall i j \in E\right\}
\end{aligned}
$$

For any odd cycle C in G, the so-called odd hole inequality

$$
\begin{equation*}
x(V(C)) \leq \frac{|C|-1}{2} \tag{1}
\end{equation*}
$$

is valid for $\operatorname{STAB}(G)$. Prove the following two facts:
a) If G itself is an odd cycle (without diagonals), then the corresponding odd hole inequality (1) defines a facet of $\operatorname{STAB}(G)$.
b) If G is an odd cycle with an additional diagonal edge, then the corresponding odd hole inequality (1) (for the cycle C with $V(C)=V(G))$ is not facet-defining for $\operatorname{STAB}(G)$.

Exercise 2:

4 points
Let $G=(V, E)$ be an undirected graph and $\operatorname{STAB}(G) \subseteq \mathbb{R}^{V}$ be defined as in Exercise 1. For any clique $C \subseteq V$ in G, the so-called clique inequality

$$
\begin{equation*}
x(C) \leq 1 \tag{2}
\end{equation*}
$$

is valid for $\operatorname{STAB}(G)$. Prove the following two facts:
a) Inequality (2) defines a facet of $\operatorname{STAB}(G)$ if and only if C is an inclusion-wise maximal clique.
b) If $|C| \geq 4$, then inequality (2) is not contained in the first Chvátal-Gomory closure $e^{1}(P(G))$ of the fractional stable set polytope

$$
\begin{aligned}
P(G):=\left\{x \in \mathbb{R}^{V} \mid x_{i}+x_{j} \leq 1\right. & \forall i j \in E \\
x_{i} \geq 0 & \forall i \in V\}
\end{aligned}
$$

Exercise 3:

4 points
An interval matrix, also called consecutive ones matrix, is a 0/1-matrix such that in each row the 1-entries are consecutive. Prove that interval matrices are totally unimodular.

Exercise 4:

Show that the matrix

$$
A:=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

is not totally unimodular, but that nevertheless

$$
P^{=}(A, b):=\{x \mid A x=b\}
$$

is integral for all integral vectors b.

