Technische Universität Berlin
Fakultät II - Institut für Mathematik

Discrete Geometry

(Kombinatorische Geometrie I)
Prof. Günter M. Ziegler
Axel Werner

Exercise Sheet 1

Deadline: 28 Apr 2008

Exercise 1.

4 points
Consider the polytope

$$
P:=\operatorname{conv}\left\{\left(\begin{array}{l}
3 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
3 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
3 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
3
\end{array}\right),\left(\begin{array}{c}
-3 \\
2 \\
2 \\
2
\end{array}\right)\right\} \subset \mathbb{R}^{4} .
$$

Show that P is 3 -dimensional and give an affine map $\Theta: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ that induces an affine equivalence.
Sketch $\Theta(P)$. How many vertices, edges and facets does P have?

Exercise 2.

(a) Show that for every d-dimensional polytope $P \subset \mathbb{R}^{e}$ there exists a polytope $P^{\prime} \subset \mathbb{R}^{d}$ such that P and P^{\prime} are affinely equivalent.
(b) Show that affine equivalence of polytopes is indeed an equivalence relation.

Exercise 3.

(a) Show that every simple and simplicial polytope of dimension $d \geq 3$ is necessarily a d-simplex.
(b) Show that if a polytope is k-neighbourly then every $(2 k-1)$-face is a simplex. Conclude that if a d-polytope is $(\lfloor d / 2\rfloor+1)$-neighbourly then it is a simplex.

Exercise 4.

Show that the centrally-symmetric polytope

$$
\operatorname{conv}\left\{\mathbf{x} \in\{-1,+1\}^{2 k-1} \mid-1 \leq x_{1}+\ldots+x_{2 k-1} \leq 1\right\}
$$

is combinatorially equivalent to the $(2 k-1)$-dimensional hypersimplex $\Delta_{2 k-1}(k)$. Which polytope do we get for $k=2$? Count the vertices and facets of the above polytope for $k=3$.

Exercise 5.

The points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in \mathbb{R}^{d}$ are affinely independent if their affine span

$$
\left\{\sum_{i=1}^{k} \lambda_{i} \mathbf{x}_{i} \mid \sum_{i=1}^{k} \lambda_{i}=1\right\}
$$

is an affine subspace of dimension $k-1$.
(a) Show that $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in \mathbb{R}^{d}$ are affinely independent if and only if the points $\mathrm{x}_{2}-\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}-\mathrm{x}_{1}$ are linearly independent.
(b) Show that $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ are affinely independent if and only if the points

$$
\binom{1}{\mathbf{x}_{1}}, \ldots,\binom{1}{\mathbf{x}_{k}} \in \mathbb{R}^{d+1}
$$

are linearly independent, that is, the matrix

$$
\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\mathbf{x}_{1} & \cdots & \mathbf{x}_{k}
\end{array}\right)
$$

has rank k.
(c) Sketch the situation in (b) for three affinely independent points $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3} \in \mathbb{R}^{2}$.
(d) Show that an affine map $\mathbb{R}^{d} \rightarrow \mathbb{R}^{e}$ is uniquely determined by the images of $d+1$ affinely independent points.
(e) Give examples of 3-dimensional polytopes that are combinatorially equivalent but not affinely.

