Discrete Geometry

(Kombinatorische Geometrie I)

Prof. Günter M. Ziegler

Axel Werner

Exercise Sheet 1

Deadline: 28 Apr 2008

Exercise 1. 4 points

Consider the polytope

$$P \,:=\, \mathsf{conv}\left\{\left(\begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 3 \\ 0 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 0 \\ 3 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 3 \end{array}\right), \left(\begin{array}{c} -3 \\ 2 \\ 2 \\ 2 \end{array}\right)\right\} \,\subset\, \mathbb{R}^4.$$

Show that P is 3-dimensional and give an affine map $\Theta : \mathbb{R}^4 \to \mathbb{R}^3$ that induces an affine equivalence.

Sketch $\Theta(P)$. How many vertices, edges and facets does P have?

Exercise 2. 4 points

- (a) Show that for every d-dimensional polytope $P \subset \mathbb{R}^e$ there exists a polytope $P' \subset \mathbb{R}^d$ such that P and P' are affinely equivalent.
- (b) Show that affine equivalence of polytopes is indeed an equivalence relation.

Exercise 3. 4 points

- (a) Show that every simple and simplicial polytope of dimension $d \geq 3$ is necessarily a d-simplex.
- (b) Show that if a polytope is k-neighbourly then every (2k-1)-face is a simplex. Conclude that if a d-polytope is $(\lfloor d/2 \rfloor + 1)$ -neighbourly then it is a simplex.

Exercise 4. 4 points

Show that the centrally-symmetric polytope

$$\operatorname{conv}\left\{\mathbf{x} \in \{-1, +1\}^{2k-1} \mid -1 \le x_1 + \ldots + x_{2k-1} \le 1\right\}$$

is combinatorially equivalent to the (2k-1)-dimensional hypersimplex $\Delta_{2k-1}(k)$. Which polytope do we get for k=2? Count the vertices and facets of the above polytope for k=3.

Exercise 5. (Tutorial)

The points $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^d$ are affinely independent if their affine span

$$\left\{ \left. \sum_{i=1}^{k} \lambda_i \mathbf{x}_i \, \right| \, \sum_{i=1}^{k} \lambda_i = 1 \, \right\}$$

is an affine subspace of dimension k-1.

- (a) Show that $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^d$ are affinely independent if and only if the points $\mathbf{x}_2 \mathbf{x}_1, \dots, \mathbf{x}_k \mathbf{x}_1$ are linearly independent.
- (b) Show that $\mathbf{x}_1, \dots, \mathbf{x}_k$ are affinely independent if and only if the points

$$\begin{pmatrix} 1 \\ \mathbf{x}_1 \end{pmatrix}, \dots, \begin{pmatrix} 1 \\ \mathbf{x}_k \end{pmatrix} \in \mathbb{R}^{d+1}$$

are linearly independent, that is, the matrix

$$\begin{pmatrix} 1 & \cdots & 1 \\ \mathbf{x}_1 & \cdots & \mathbf{x}_k \end{pmatrix}$$

has rank k.

- (c) Sketch the situation in (b) for three affinely independent points $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \in \mathbb{R}^2$.
- (d) Show that an affine map $\mathbb{R}^d \to \mathbb{R}^e$ is uniquely determined by the images of d+1 affinely independent points.
- (e) Give examples of 3-dimensional polytopes that are combinatorially equivalent but not affinely.