Discrete Geometry

(Kombinatorische Geometrie I)
Prof. Günter M. Ziegler Axel Werner

Exercise Sheet 2

Deadline: 5 May 2008

Exercise 6.

Recall: A d-dimensional stacked polytope on n vertices arises from a d-simplex by carrying out $n-d-1$ stacking operations, where a stacking operation amounts to "gluing" a pyramid over a facet onto the facet in such
 a way that the result is again convex.
(a) Calculate the f-vector of a 4-dimensional stacked polytope with n vertices.
(b) Give two stacked polytopes (of your favourite dimension) with the same number of vertices which are not combinatorially equivalent.

Exercise 7.

4 points
(a) Show that every polytope is the image of a standard simplex under some projection.
(b) Show that every centrally-symmetric polytope (with respect to the origin) is the image of a standard crosspolytope under some projection.

Exercise 8.

Prove Radon's theorem: If V is a set of $d+2$ points in \mathbb{R}^{d}, there exist disjoint non-empty subsets $V_{1}, V_{2} \subseteq V$ such that conv $V_{1} \cap$ conv $V_{2} \neq \emptyset$.
Hint: Carathéodory's theorem.
Exercise 9.
4 points
Sketch all 3-dimensional 0/1-polytopes up to affine equivalence. How many affine and how many combinatorial equivalence classes are there?

Exercise 10.

(a) The cyclic moment curve in $\mathbb{R}^{2 k}$ is defined by

$$
\mathbf{p}(t)=(\cos t, \sin t, \cos 2 t, \sin 2 t, \ldots, \cos k t, \sin k t)^{\top} .
$$

For $n \geq 2 k+1$ and $0 \leq t_{1}<\ldots<t_{n}<2 \pi$ define

$$
P:=\operatorname{conv}\left\{\mathbf{p}\left(t_{i}\right) \mid 1 \leq i \leq n\right\} .
$$

Show that P is combinatorially equivalent to a ($2 k$)-dimensional cyclic polytope with n vertices.
Hint:

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\cos \nu_{0} & \cos \nu_{1} & & \cos \nu_{2 k} \\
\sin \nu_{0} & \sin \nu_{1} & \cdots & \sin \nu_{2 k} \\
\vdots & \vdots & & \vdots \\
\cos k \nu_{0} & \cos k \nu_{1} & & \cos k \nu_{2 k} \\
\sin k \nu_{0} & \sin k \nu_{1} & \cdots & \sin k \nu_{2 k}
\end{array}\right)=4^{k^{2}} \prod_{0 \leq i<j \leq 2 k} \sin \frac{\nu_{j}-\nu_{i}}{2}
$$

(b) Show that the number of facets of a cyclic polytope with n vertices is

$$
\begin{aligned}
f_{d-1}\left(\mathcal{C}_{d}(n)\right) & =\binom{n-\left\lceil\frac{d}{2}\right\rceil}{\left\lfloor\frac{d}{2}\right\rfloor}+\binom{n-1-\left\lceil\frac{d-1}{2}\right\rceil}{\left\lfloor\frac{d-1}{2}\right\rfloor} \\
& =\left\{\begin{array}{cl}
\frac{n}{n-k}\binom{n-k}{k} & \text { for } d=2 k \text { even } \\
2\binom{n-k-1}{k} & \text { for } d=2 k+1 \text { odd }
\end{array}\right.
\end{aligned}
$$

Hint: Show that the number of ways in which $2 k$ elements can be chosen from $\{1, \ldots, n\}$ in "even blocks of adjacent elements" is $\binom{n-k}{k}$.
(c) Is the polytope $\left(\Delta_{2} \times \Delta_{2}\right)^{\Delta}$ combinatorially equivalent to $\mathcal{C}_{4}(6)$?

Hint: You can check if you're right with polymake: The client that constructs the dual (or polar) of a polytope is called polarize. (For this the polytope that is about to be polarized, has to be full-dimensional and centered, the last of which can be achieved by the center client.)

