Discrete Geometry

(Kombinatorische Geometrie I)
Prof. Günter M. Ziegler
Axel Werner

Exercise Sheet 3

Deadline: 12 May 2008

Exercise 11.

Find an \mathcal{H}-description of the polytope

$$
P:=\operatorname{conv}\left\{\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)\right\}
$$

by applying Fourier-Motzkin elimination.

Exercise 12.

(a) Draw a Hasse diagram of the face lattice of a prism over a triangle. How many maximal chains does it contain? (Count smartly...!)
(b) Give a poset that satisfies all of the conditions of a polytope face lattice, but does not correspond to some polytope. Can you find some other geometric object that it corresponds to?

Exercise 13.

State and prove a Farkas lemma for systems of the form $A \mathbf{x} \leq \mathbf{z}, \mathbf{x} \geq \mathbf{0}$.

Exercise 14.

4 points
For a polytope P and a face F of P we define the face figure $P / F:=\left(F^{\diamond}\right)^{\Delta}$, that is the polar of the face of P^{Δ} that corresponds to F.
Show that P / F is a polytope of $\operatorname{dimension~} \operatorname{dim}(P / F)=\operatorname{dim}(P)-\operatorname{dim}(F)-1$ and describe the face lattice $L(P / F)$ in terms of $L(P)$ and the face $F \in L(P)$.
Describe a direct geometric construction for P / F as an iterated vertex figure that generalises the definition of the vertex figure.

Exercise 15.
(Tutorial)
Recall: A (polyhedral) cone in \mathbb{R}^{d} is the conical hull of a finite set of vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{d}:$

$$
\operatorname{cone}(A)=\left\{t_{1} \mathbf{a}_{1}+\ldots+t_{n} \mathbf{a}_{n} \mid t_{i} \geq 0\right\}=\{A \mathbf{t} \mid \mathbf{t} \geq \mathbf{0}\}
$$

where A is the matrix with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$.
(a) Give a geometric interpretation of the Farkas Lemma II:

If $A \in \mathbb{R}^{n \times m}$ and $\mathbf{z} \in \mathbb{R}^{n}$ then
either there is some $\mathbf{x} \in \mathbb{R}^{m}$ with $A \mathbf{x}=\mathbf{z}, \mathbf{x} \geq \mathbf{0}$,
or there is some $\mathbf{c} \in \mathbb{R}^{n}$ such that $\mathbf{c}^{\top} A \geq \mathbf{0}^{\top}$ and $\mathbf{c}^{\top} \mathbf{z}<0$,
but not both.
(b) Let $P \subset \mathbb{R}^{d}$ be a convex set. The recession cone of P is the cone

$$
\operatorname{rec}(P):=\left\{\mathbf{y} \in \mathbb{R}^{d} \mid \mathbf{x}+t \mathbf{y} \in P \text { for all } \mathbf{x} \in P, t \geq 0\right\}
$$

What is the recession cone of a polytope?
The homogenisation of P is defined by

$$
\operatorname{homog}(P):=\left\{\left.t\binom{1}{\mathbf{x}} \right\rvert\, \mathbf{x} \in P, t>0\right\}+\left\{\left.\binom{0}{\mathbf{y}} \right\rvert\, \mathbf{y} \in \operatorname{rec}(P)\right\} .
$$

Show that $\operatorname{homog}(P)$ is a polyhedral cone in \mathbb{R}^{d+1} and

$$
\begin{aligned}
\operatorname{homog}(P) & =\operatorname{cone}\left(\begin{array}{cc}
\mathbf{1}^{\top} & \mathbf{0}^{\top} \\
V & Y
\end{array}\right) \\
& =\left\{\mathbf{x} \in \mathbb{R}^{d+1} \left\lvert\,\left(\begin{array}{cc}
-1 & \mathbf{0}^{\top} \\
-\mathbf{z} & A
\end{array}\right) \leq\binom{ 0}{\mathbf{0}}\right.\right\}
\end{aligned}
$$

where

- V is the matrix whose columns are exactly the vertices of P,
- Y is the matrix containing the extreme rays of $\operatorname{rec}(P): \operatorname{rec}(P)=\operatorname{cone}(Y)$,
- A and \mathbf{z} define an \mathcal{H}-representation of $P: P=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid A \mathbf{x} \leq \mathbf{z}\right\}$.
(c) Carathéodory's Theorem (a version for cones and one for polytopes):
(a) Let $C \subset \mathbb{R}^{d}$ be a d-dimensional cone with extreme rays $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$ and $\mathbf{x} \in C$. Then \mathbf{x} can be written as a conical combination of at most d extreme rays of C.
(b) Let $P \subset \mathbb{R}^{d}$ be a d-polytope with vertices $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and $\mathbf{x} \in P$. Then \mathbf{x} can be written as a convex combination of at most $d+1$ vertices of P.

