Discrete Geometry

(Kombinatorische Geometrie I)

Prof. Günter M. Ziegler

Axel Werner

Exercise Sheet 4

Deadline: 19 May 2008

Exercise 16. 4 points

(a) Consider the 2-polytope

$$P \,:=\, \mathsf{conv}\,\Big\{\left(\begin{array}{c}2\\-1\end{array}\right), \left(\begin{array}{c}2\\2\end{array}\right), \left(\begin{array}{c}-1\\3\end{array}\right), \left(\begin{array}{c}-2\\2\end{array}\right), \left(\begin{array}{c}-1\\-2\end{array}\right), \left(\begin{array}{c}1\\-2\end{array}\right)\Big\}.$$

Calculate the vertices of P^{Δ} and sketch both P and P^{Δ} . Now translate to get the polytope $Q:=P+\begin{pmatrix}1\\1\end{pmatrix}$. Again calculate the vertices of Q^{Δ} and sketch it.

old version: $Q := P - \binom{1}{1}$

(b) Prove: If P is a polytope with $\mathbf{0} \notin P$ then P^{Δ} is unbounded.

Exercise 17. 4 points

Let $P \subset \mathbb{R}^d$ be a polytope and \mathbf{u}, \mathbf{v} two distinct vertices of P. Show that there is a projective transformation p such that the vertices $\mathbf{u}' := p(\mathbf{u})$ and $\mathbf{v}' := p(\mathbf{v})$ have the largest, respectively the smallest, x_d -coordinate among all vertices of P' := p(P).

Exercise 18. 4 points

The following "cubical stacking procedure" recycles a cubical polytope P to produce a new cubical polytope P' by "gluing" a cube onto a facet of P. More precisely: Given a cubical d-polytope P choose a facet F of P. Stack this facet by "gluing" a pyramid over F onto the facet such that the result is convex again and every vertex of P stays a vertex of the resulting polytope. (See Exercise 6, except that F is now a (d-1)-cube instead of a (d-1)-simplex.) Then "cut off" the apex of this pyramid with a hyperplane which is parallel to F and between F and the apex. The result is the cubical stacked polytope P'.

An n-fold cubical-stacked polytope is the result of starting with a cube and applying the above procedure n times.

Give coordinates for the vertices of a 3-fold cubical-stacked 4-polytope (of your choice).

Exercise 19. 4 points

Consider the product

$$P \times Q = \left\{ \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} \mid \mathbf{x} \in P, \mathbf{y} \in Q \right\}$$

of two polytopes P and Q.

- (a) Show that the non-empty faces of $P \times Q$ are exactly the products of the faces of P with the faces of Q.
- (b) Describe the face lattice $L(P \times Q)$ in terms of the face lattices L(P) and L(Q).
- (c) Write down the f-vector of $P \times Q$ in terms of the f-vectors of P and Q.

The

☼ Umtrunk

₹

will take place at SCHLEUSEN KRUG on Wed, 14 Mar, starting at 18:00.

Exercise 20. (Tutorial)

A projective transformation of \mathbb{R}^d is a mapping p that maps a point $\mathbf{x} \in \mathbb{R}^d$ in the following way: Embed \mathbf{x} as $\begin{pmatrix} 1 \\ \mathbf{x} \end{pmatrix}$ into \mathbb{R}^{d+1} , then apply a linear transformation $T \in GL_{d+1}\mathbb{R}$; the image point $p(\mathbf{x})$ of \mathbf{x} under p is the intersection of the ray $\left\{\lambda \cdot T \begin{pmatrix} 1 \\ \mathbf{x} \end{pmatrix} \mid \lambda \geq 0\right\}$ with the plane $\left\{\begin{pmatrix} 1 \\ \mathbf{y} \end{pmatrix} \mid \mathbf{y} \in \mathbb{R}^d\right\} \cong \mathbb{R}^d$.

(a) Given a polytope $P \subset \mathbb{R}^d$, let the polytope P' = p(P) be the image of P under a projective transformation p. Show that P' is of the form

$$P' = \left\{ \frac{S\mathbf{x} + \mathbf{z}}{\mathbf{a}^{\mathsf{T}}\mathbf{x} + t} \mid \mathbf{x} \in P \right\}$$

where $t \in \mathbb{R}$, $\mathbf{a}, \mathbf{z} \in \mathbb{R}^d$ and S is a $(d \times d)$ -matrix such that $\det \begin{pmatrix} t & \mathbf{a}^\top \\ \mathbf{z} & S \end{pmatrix} \neq 0$ and we have $\mathbf{a}^\top \mathbf{v} + t > 0$ for all vertices \mathbf{v} of P.

- (b) Let $\mathbf{x}_1, \ldots, \mathbf{x}_{d+2}$ be points in \mathbb{R}^d with the property that every set of d+1 of them is affinely independent. Let $\mathbf{y}_1, \ldots, \mathbf{y}_{d+2} \in \mathbb{R}^d$ be another set with this property. Show that there is a projective transformation that maps \mathbf{x}_i to \mathbf{y}_i for all $i \in \{1, \ldots, d+2\}$.
- (c) What happens to the points \mathbf{x} on the hyperplane defined by $\mathbf{a}^{\top}\mathbf{x} + t = 0$ under the projective transformation in (a)? How does the image of a polytope P look like if one of its vertices is on this hyperplane? What if one of its facets lies there?
- (d) Let $P \in \mathbb{R}^d$ be a polytope and F_1 and F_2 two facets of P that do not intersect. Show that there is a projective transformation p such that the two facets $F'_1 := p(F_1)$ and $F'_2 := p(F_2)$ of P' := p(P) are parallel, that is the hyperplanes aff F'_1 and aff F'_2 do not intersect in \mathbb{R}^d .

(e) Let $P \subset \mathbb{R}^d$ be a polytope and F a facet of P. Show that there is a projective transformation p with the following property: If P' := p(P) and F' := p(F) and $\pi : \mathbb{R}^d \to \mathsf{aff}\ F'$ is the projection map onto the hyperplane defined by F', then $\pi(P') \subseteq \pi(F')$

Exercise 21. (Tutorial)

Describe the polytopes that have the following face lattices:

