Discrete Geometry

(Kombinatorische Geometrie I)
Prof. Günter M. Ziegler
Axel Werner

Exercise Sheet 5

Deadline: 26 May 2008

Exercise 22.

4 points
Given a graph $G=(V, E)$, a spanning tree of G is a subgraph $T=\left(V, E^{\prime}\right)$ (that is $\left.E^{\prime} \subseteq E\right)$ containing all vertices of G such that T is a tree (that is T is connected and contains no cycles). It is easy to see that every connected graph contains a spanning tree.

(a) Given a spanning tree $T=(V, E)$ of the graph of a 3-polytope P show that there is a spanning tree $T^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of the graph of the polar polytope P^{Δ} with $|E|+\left|E^{\prime}\right|=f_{1}(P)$.
(b) Show Euler's formula for 3-polytopes: $f_{0}(P)-f_{1}(P)+f_{2}(P)=2$.
(Hint: Use the fact that a tree with n vertices has exactly $n-1$ edges.)

Exercise 23.

(a) Use Euler's formula to show that $f_{0}(P) \leq 2 f_{2}(P)-4$ and $f_{2}(P) \leq 2 f_{0}(P)-4$ for every 3 -polytope P.
(b) Show that the Hirsch conjecture is true for 3-dimensional polytopes.

Exercise 24.

Show that the shape of a quadrangular facet of a 3-polytope can be prescribed. More precisely: Given a 3 -polytope P with a quadrangular facet, show that there is a combinatorially isomorphic 3 -polytope P^{\prime} where the corresponding facet is a unit square.

Exercise 25.
4 points
Sketch the graph of the polytope given by the face lattice on the backside. Can you describe how to obtain a geometric realisation of the polytope? (It's called an antiprism.)

