Discrete Geometry

(Kombinatorische Geometrie I)
Prof. Günter M. Ziegler
Axel Werner

Exercise Sheet 6

Deadline: 2 Jun 2008

Exercise 26.

Sketch Schlegel diagrams of the following 4-polytopes:
(a) A pyramid over a triangular prism, pyr bipyr Δ_{2};
(b) The product of a 3 -gon and a 6 -gon;
(c) A 4-dimensional crosspolytope C_{4}^{Δ};
(d) A twice stacked 4-simplex.

Exercise 27.
4 points
Let $P \subset \mathbb{R}^{d}$ be a d-polytope and $\mathbf{c} \in \mathbb{R}^{d}$ define a linear function $\mathbf{c}^{\top} \mathbf{x}$ (not necessarily in general position). Suppose the graph $G(P)$ of P carries the orientation induced by \mathbf{c}, with edges orthogonal to \mathbf{c} ignored (or oriented randomly).
Show that for every vertex \mathbf{v} of P that is not optimal with respect to the functional $\mathbf{c}^{\top} \mathbf{x}$ there is an outgoing edge from \mathbf{v}.

Exercise 28.

Show that if P is a 3-polytope then either P or P^{Δ} contains a triangular facet.

Exercise 29.

4 points
Use the polymake client tutte-lifting to obtain a Tutte embedding of the graph on the right.
Explain how this polytope can be obtained from a triangular prism.

Exercise 30.

In this exercise we compare the different proofs for Steinitz's theorem for the following examples:

a triangular prism, a cube with a vertex cut off and another cube with one vertex cut off "completely", i.e. by cutting with a hyperplane that goes through all 3 neighbouring vertices.
(a) How many simple Δ - Y-transformations do you need to get to a simplex? If only "cutting off a vertex" (that is, Y - Δ-transformations) are allowed, how often do you have to polarize on the way?
(b) Construct a (correct!) "rubber band" drawing that can be lifted to 3 -space.
(c) Construct a (correct!?) planar circle packing representation.

