Discrete Geometry

(Kombinatorische Geometrie I)
Prof. Günter M. Ziegler

Exercise Sheet 7

Deadline: 9 Jun 2008

Exercise 31.

4 points
Given two polytopes P and Q, their join is the polytope

$$
P * Q:=\operatorname{conv}\left\{\left(\begin{array}{l}
\mathbf{x} \\
\mathbf{0} \\
0
\end{array}\right), \left.\left(\begin{array}{l}
\mathbf{0} \\
\mathbf{y} \\
1
\end{array}\right) \right\rvert\, \mathbf{x} \in P, \mathbf{y} \in Q\right\} .
$$

For example, the join of two 1-polytopes $[-1,1] *[-1,1]$
 is a tetrahedron.
(a) Show that the dimension of the join $P * Q$ is $\operatorname{dim}(P * Q)=\operatorname{dim} P+\operatorname{dim} Q+1$. What is the join of a polytope P with a 0 -dimensional polytope (i.e. a point)?
(b) Show that there are 5 -dimensional polytopes where the number of 2 -faces is quadratic in the number of vertices and facets: $f_{2} \in \Omega\left(\left(f_{0}+f_{4}\right)^{2}\right)$.

Exercise 32.

Show that the f-vectors of 2 -simple, 2 -simplicial 4 -polytopes are symmetric.

Exercise 33.

Consider the d-dimensional standard cube $C_{d}=\operatorname{conv}\{-1,1\}^{d}$.
(a) Give a combinatorial description of all faces of C_{d} in terms of d-tuples that contain the symbols,+- and $*$. How do you read off the dimension of a face in this notation?
(b) Show that the f-vector of C_{d} is given by

$$
f_{k}\left(C_{d}\right)=\binom{d}{k} \cdot 2^{d-k} \quad \text { for } 0 \leq k \leq d-1
$$

What can you say about the flag vector?

Recall the definitions of the star and the link of a vertex v in a polyhedral complex \mathcal{C} :

$$
\begin{aligned}
\operatorname{star}(v, \mathcal{C}) & :=\{F \in \mathcal{C} \mid \exists G \in \mathcal{C}: F \subseteq G \text { and } v \in G\} \\
\operatorname{link}(v, \mathcal{C}) & :=\{F \in \mathcal{C} \mid F \in \operatorname{star}(v, \mathcal{C}) \text { and } v \notin F\}
\end{aligned}
$$

Let \mathcal{C} be the boundary complex of a polytope P and \mathbf{v} a vertex of P. Show that the link of \mathbf{v} in \mathcal{C} is shellable.
Hint: Use a point beyond \mathbf{v} to show that the link is combinatorially isomorphic to the boundary complex of some polytope.

Exercise 35.
(Tutorial)
(a) Describe what happens if you "break" a facet of a simple polytope by "pulling" a vertex out of the affine hull of the facet. Make sketches for the 3-dimensional and 4-dimensional case.
How about "pushing" the vertex? What happens if the vertex is "cut off"?
(b) Find two combinatorially different 4-polytopes that have the same graph.

