Discrete Geometry

(Kombinatorische Geometrie I)
Prof. Günter M. Ziegler
Axel Werner

Exercise Sheet 8

Deadline: 16 Jun 2008

Exercise 36.

Give an example of a pure simplicial complex that has an h-vector with negative entries.

Exercise 37.

4 points
Show that the d-cube C_{d} is extendably shellable.
(Hint: Characterise the pure, $(d-1)$-dimensional subcomplexes of ∂C_{d} that are shellable, by considering "opposite" facets.)

Exercise 38.
4 points
Calculate the f-vector of the d-dimensional hypersimplex

$$
\Delta_{d}(k)=[0,1]^{d+1} \cap\left\{\mathbf{x} \in \mathbb{R}^{d+1} \mid \sum_{i=1}^{d+1} x_{i}=k\right\}
$$

for $2 \leq k \leq d-1$. Verify your result with Euler's equation.
(Hint: Use Exercise 33.)
Exercise 39.
4 points
Plot the f-vector shapes of the following polytopes (you might want to use a computer algebra program like Mathematica or Maple):
(a) the cyclic polytope $\mathcal{C}_{10}(20)$,
(b) a 10-dimensional stacked polytope with 20 vertices,
(c) the 10-dimensional hypersimplex $\Delta_{10}(5)$.

Exercise 40.

Given a d-polytope P and a subset $S=\left\{i_{1}, \ldots, i_{\ell}\right\} \subseteq\{0, \ldots, d-1\}=$: $[d]$ with $i_{1}<\ldots<i_{\ell}$, let

$$
f_{S}(P):=\#\left\{F_{i_{1}} \subset \ldots \subset F_{i_{\ell}} \mid F_{i_{j}} \text { face of } P, \operatorname{dim} F_{i_{j}}=i_{j} \text { for all } j\right\}
$$

be the number of chains (or flags) of faces of P whose dimensions exactly match the numbers given by S.
The (complete) flag vector of P is the 2^{d}-tuple

$$
\left(f_{S}(P)\right)_{S \subseteq[d]}
$$

Obviously, the f-vector is a part of the flag vector:

$$
f(P)=\left(f_{S}(P)\right)_{S \subseteq[d],|S|=1}
$$

(a) Give the flag vectors of your favourite polytopes, for example the 3-dimensional cube and the octahedron, pyramids, stacked polytopes etc. What are the entries of the flag vector of the d-simplex? What is $f_{\emptyset}(P)$ for an arbitrary polytope P ? What is $f_{S}\left(P^{\Delta}\right)$ in terms of the flag vector of P ?
(b) Show that for 4 -polytopes we only need to know the entries f_{0}, f_{1}, f_{2} and f_{02} to determine the complete flag vector.
(c) Can you tell from the f-vector of a polytope whether it is simplicial/simple or not? Can you tell from its f-vector whether it is 2 -simplicial? Give a criterion for a polytope to be 2 -simplicial/ 2 -simple in terms of the flag vector.
(d) (A generalisation of (b):) For a d-polytope it is enough to know the entries f_{S}, where $S \subseteq[d]$ is a sparse set, that is, $S \subseteq\{0, \ldots, d-2\}$ and S contains no two consecutive numbers.
This follows from the Generalized Dehn-Sommerville equations, due to BayER and Billera (1985): if $S \subset[d]$ and we have $i, j \in S$ with $0 \leq i<j \leq d-1$ such that no integer k with $i<k<j$ is contained in S (i.e. S has a "gap" between i and j), then

$$
\sum_{k=i+1}^{j-1}(-1)^{k-i-1} f_{S \cup\{k\}}=\left(1-(-1)^{j-i-1}\right) f_{S} .
$$

The formula even makes sense if $i=-1$ or $j=d$, taking into account that $f_{-1, i_{1}, \ldots, i_{\ell}}=f_{i_{1}, \ldots, i_{\ell}}=f_{i_{1}, \ldots, i_{\ell}, d}$. Finally, for $i=-1$ and $j=d$ we get back Euler's equation.

