Discrete Geometry

(Kombinatorische Geometrie I)
Prof. Günter M. Ziegler
Axel Werner

Exercise Sheet 9

Deadline: 23 Jun 2008

Exercise 41.

Use the g-theorem and the McMullen matrices M_{4} and M_{5} to obtain the g-vector of the following polytopes:
(a) the 4-dimensional crosspolytope C_{4}^{Δ},
(b) a 4-dimensional stacked polytope on 8 vertices,
(c) a 4-dimensional cyclic polytope on 8 vertices,
(d) the 5 -dimensional crosspolytope C_{5}^{Δ},
(e) a 5-dimensional stacked polytope on 10 vertices,
(f) a 5-dimensional cyclic polytope on 10 vertices.

Exercise 42.

4 points
Prove the following lemma on the way to the lower bound theorem:
If $f_{1} \geq d f_{0}-K_{d}$ holds for all simplicial d-polytopes, where K_{d} is a constant depending only on d (that is, not on the polytope), then the lower bound theorem holds for the edges, that is

$$
f_{1}(P) \geq d f_{0}(P)-\binom{d+1}{2}
$$

for all simplicial d-polytopes P.
(Hint: Consider a reflection of P in one of its facets.)
(a) Consider the three Gale diagrams below. Determine the vertex-facet incidences of the corresponding polytopes. Which polytopes are described by the diagrams?

(b) Let P be a d-polytope and G its Gale diagram. How does the Gale diagram change for the pyramid and the bipyramid over P ?

Exercise 44.

4 points
A truncated icosahedron F is obtained from a regular icosahedron (centered at the origin) by cutting off the 12 vertices by symmetric hyperplanes. More precisely: each hyperplane is orthogonal to the vertex vector it cuts off and the facets of F are regular hexagons and pentagons.
Calculate the f-vector of F. How long do the edges of F have to be such that F complies with the FIFA regulations?

(Hint: If you're not so sure about the regulations you might want to consider http://www.fifa.com/mm/document/affederation/federation/laws_of_the_game_0708_10565.pdf)

