Discrete Geometry

(Kombinatorische Geometrie I)

Prof. Günter M. Ziegler

Axel Werner

Exercise Sheet 9

Deadline: 23 Jun 2008

Exercise 41. 4 points

Use the g-theorem and the McMullen matrices M_4 and M_5 to obtain the g-vector of the following polytopes:

- (a) the 4-dimensional crosspolytope C_4^{Δ} ,
- (b) a 4-dimensional stacked polytope on 8 vertices,
- (c) a 4-dimensional cyclic polytope on 8 vertices,
- (d) the 5-dimensional crosspolytope C_5^{Δ} ,
- (e) a 5-dimensional stacked polytope on 10 vertices,
- (f) a 5-dimensional cyclic polytope on 10 vertices.

Exercise 42. 4 points

Prove the following lemma on the way to the lower bound theorem:

If $f_1 \ge df_0 - K_d$ holds for all simplicial d-polytopes, where K_d is a constant depending only on d (that is, not on the polytope), then the lower bound theorem holds for the edges, that is

$$f_1(P) \geq df_0(P) - \binom{d+1}{2}$$

for all simplicial d-polytopes P.

(Hint: Consider a reflection of P in one of its facets.)

Exercise 43. 4 points

(a) Consider the three Gale diagrams below. Determine the vertex-facet incidences of the corresponding polytopes. Which polytopes are described by the diagrams?

(b) Let P be a d-polytope and G its Gale diagram. How does the Gale diagram change for the pyramid and the bipyramid over P?

Exercise 44. 4 points

A truncated icosahedron F is obtained from a regular icosahedron (centered at the origin) by cutting off the 12 vertices by symmetric hyperplanes. More precisely: each hyperplane is orthogonal to the vertex vector it cuts off and the facets of F are regular hexagons and pentagons.

Calculate the f-vector of F. How long do the edges of F have to be such that F complies with the FIFA regulations?

(*Hint*: If you're not so sure about the regulations you might want to consider http://www.fifa.com/mm/document/affederation/federation/laws_of_the_game_0708_10565.pdf)