BERLIN MATHEMATICAL SCHOOL Sommersemester 2008

Discrete Geometry

(Kombinatorische Geometrie I)

Prof. Günter M. Ziegler

Axel Werner

Exercise Sheet 12

(last problem set of semester)

Deadline: 14 Jul 2008

Exercise 55. 4 points

For a point $p = (p_x, p_y)$ in the plane we define its dual line

$$p^* := \{(x,y) \in \mathbb{R}^2 \mid y = p_x x - p_y\}.$$

Accordingly, for a non-vertical line $\ell = \{(x,y) \in \mathbb{R}^2 \mid y = mx + b\}$ in the plane, the *dual point* is defined by $\ell^* := (m, -b)$. (Note that there are no dual points of vertical lines!) Obviously, we have $(p^*)^* = p$ for all points p and $(\ell^*)^* = \ell$ for all non-vertical lines ℓ .

(a) Sketch the dual line configuration for the point set

$$\{(0,0),(1,1),(1,-1),(-2,1),(-1,-1)\}$$

- (b) Show that this concept of duality is incidence preserving and order preserving: For every point p and non-vertical line ℓ
 - $p \in \ell$ if and only if $\ell^* \in p^*$ and
 - p lies above ℓ if and only if ℓ^* lies above p^* .
- (c) Show that a finite point set P is in general position if and only if the line arrangement $P^* = \{p^* \mid p \in P\}$ is simple.
- (d) Describe the dual of a line segment [p,q] between two points p and q and the dual of the convex hull of a finite set of points.

Exercise 56. 4 points

Calculate the number of k-faces of a simple arrangement of n hyperplanes in \mathbb{R}^d .

Exercise 57. 4 points

- (a) Prove that an arrangement of d of fewer hyperplanes in \mathbb{R}^d has no bounded cell.
- (b) Prove that an arrangement of d+1 hyperplanes in general position in \mathbb{R}^d has exactly one bounded cell.

Exercise 58. 4 points

How many d-dimensional cells does the (non-simple) arrangement

$$H = \left\{ \left\{ \mathbf{x} \in \mathbb{R}^d \mid x_i = x_j \right\} \mid 1 \le i < j \le d \right\}$$

of $\binom{d}{2}$ hyperplanes in \mathbb{R}^d have? Identify the zonotope associated with this arrangement.

Exercise 59. (Tutorial)

- (a) Show that the dual of the Voronoi diagram of a finite set of points $P \subset \mathbb{R}^d$ defines a polytopal subdivision of conv P. When is this subdivision a triangulation?
- (b) Show that the Delaunay triangulation of a point set in the plane is *angle-optimal* (that is, it maximises the angles in the triangles of the subdivision) by starting with an arbitrary triangulation and *flipping* edges.

From: M. de Berg et al., Computational Geometry, Springer, 2000

The ★ FINAL EXAM ★

will take place on Fri, 1 Aug 2008, 10:00-12:00 in room MA 841.

Pappus' theorem:

Desargues' theorem:

