Technische Universität Berlin
Fakultät II - Institut für Mathematik

Discrete Geometry

(Kombinatorische Geometrie I)
Prof. Günter M. Ziegler
Axel Werner

Exercise Sheet 12

(last problem set of semester)
Deadline: 14 Jul 2008

Exercise 55.

For a point $p=\left(p_{x}, p_{y}\right)$ in the plane we define its dual line

$$
p^{*}:=\left\{(x, y) \in \mathbb{R}^{2} \mid y=p_{x} x-p_{y}\right\} .
$$

Accordingly, for a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2} \mid y=m x+b\right\}$ in the plane, the dual point is defined by $\ell^{*}:=(m,-b)$. (Note that there are no dual points of vertical lines!) Obviously, we have $\left(p^{*}\right)^{*}=p$ for all points p and $\left(\ell^{*}\right)^{*}=\ell$ for all non-vertical lines ℓ.
(a) Sketch the dual line configuration for the point set

$$
\{(0,0),(1,1),(1,-1),(-2,1),(-1,-1)\}
$$

(b) Show that this concept of duality is incidence preserving and order preserving: For every point p and non-vertical line ℓ

- $p \in \ell$ if and only if $\ell^{*} \in p^{*}$ and
- p lies above ℓ if and only if ℓ^{*} lies above p^{*}.
(c) Show that a finite point set P is in general position if and only if the line arrangement $P^{*}=\left\{p^{*} \mid p \in P\right\}$ is simple.
(d) Describe the dual of a line segment $[p, q]$ between two points p and q and the dual of the convex hull of a finite set of points.

Exercise 56.

Calculate the number of k-faces of a simple arrangement of n hyperplanes in \mathbb{R}^{d}.
Exercise 57.
(a) Prove that an arrangement of d of fewer hyperplanes in \mathbb{R}^{d} has no bounded cell.
(b) Prove that an arrangement of $d+1$ hyperplanes in general position in \mathbb{R}^{d} has exactly one bounded cell.

How many d-dimensional cells does the (non-simple) arrangement

$$
H=\left\{\left\{\mathbf{x} \in \mathbb{R}^{d} \mid x_{i}=x_{j}\right\} \mid 1 \leq i<j \leq d\right\}
$$

of $\binom{d}{2}$ hyperplanes in \mathbb{R}^{d} have? Identify the zonotope associated with this arrangement.

Exercise 59.

(a) Show that the dual of the Voronoi diagram of a finite set of points $P \subset \mathbb{R}^{d}$ defines a polytopal subdivision of conv P. When is this subdivision a triangulation?
(b) Show that the Delaunay triangulation of a point set in the plane is angle-optimal (that is, it maximises the angles in the triangles of the subdivision) by starting with an arbitrary triangulation and flipping edges.

From: M. de Berg et al., Computational Geometry, Springer, 2000

The

* FINAL EXAM 次 will take place on Fri, 1 Aug 2008, 10:00-12:00 in room MA 841.

Pappus' theorem:

Desargues' theorem:

