Functional Analysis I

10th problem sheet

Please return your answers in the tutorials on June, 26th / 27th.

Problem 1:

5 pt.

Let $1<p<\infty, a=\left(a_{1}, a_{2}, \ldots\right) \in l^{\infty}(\mathbb{N}), N \in \mathbb{N}$ and define $T_{i}: l^{p}(\mathbb{N}) \rightarrow l^{p}(\mathbb{N})$, $i=1,2,3$ by

$$
\begin{aligned}
& T_{1} x:=\left(a_{1} x_{1}, a_{2} x_{2}, \ldots\right), \\
& T_{2} x:=\left(0,0, a_{1} x_{1}, a_{2} x_{2}, \ldots\right) \\
& T_{3} x:=\left(x_{1}, x_{2}, \ldots, x_{N}, 0, \ldots\right),
\end{aligned}
$$

for $x \in l^{p}(\mathbb{N})$. Show that these operators are bounded and determine the corresponding adjoint operators.

Problem 2:

5 pt.
Let X, Y and Z be Banach spaces and let $S \in L(X, Z), T \in L(Y, Z)$. Assume that for every $x \in X$ there is an unique $y \in Y$ with $S x=T y$. Define $A: X \rightarrow Y$ to be the operator that maps $x \in X$ to this unique $y \in Y$. Show that A is linear and bounded.

Problem 3:

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be measurable. We define

$$
\mathcal{D}:=\left\{f \in L^{2}(\mathbb{R}) \mid g f \in L^{2}(\mathbb{R})\right\} \subset L^{2}(\mathbb{R})
$$

and

$$
T: \mathcal{D} \rightarrow L^{2}(\mathbb{R}), \quad f \mapsto T f:=g f
$$

(i) Show that $\|(T-\lambda) f\|_{2} \geq|\operatorname{Im} \lambda|\|f\|_{2}$ for all $f \in \mathcal{D}, \lambda \in \mathbb{C}^{1}$.
(ii) Let $\lambda \in \mathbb{C} \backslash \mathbb{R}$. Show that the operator $T-\lambda$ is bijective and the inverse $(T-\lambda)^{-1}$ is bounded. Calculate the inverse $(T-\lambda)^{-1}$ in this case. Show that both $T-\lambda$ and T are closed operators.

[^0](i) Give a counterexample that shows that the completeness of X is necessary in the closed graph theorem.
(ii) Give a counterexample that shows that the completeness of Y is necessary in the closed graph theorem.

[^0]: ${ }^{1} \operatorname{Im} \lambda$ is the imaginary part of λ.

