TECHNISCHE UNIVERSITÄT BERLIN INSTITUT FÜR MATHEMATIK J. Behrndt, C. Kreusler

Functional Analysis I

10th problem sheet

Please return your answers in the tutorials on June, 26th / 27th.

Problem 1:

Let $1 , <math>a = (a_1, a_2, \dots) \in l^{\infty}(\mathbb{N})$, $N \in \mathbb{N}$ and define $T_i : l^p(\mathbb{N}) \to l^p(\mathbb{N})$, i = 1, 2, 3 by

$$T_1 x := (a_1 x_1, a_2 x_2, \dots),$$

$$T_2 x := (0, 0, a_1 x_1, a_2 x_2, \dots),$$

$$T_3 x := (x_1, x_2, \dots, x_N, 0, \dots),$$

for $x \in l^p(\mathbb{N})$. Show that these operators are bounded and determine the corresponding adjoint operators.

Problem 2:

Let X, Y and Z be Banach spaces and let $S \in L(X, Z)$, $T \in L(Y, Z)$. Assume that for every $x \in X$ there is an unique $y \in Y$ with Sx = Ty. Define $A : X \to Y$ to be the operator that maps $x \in X$ to this unique $y \in Y$. Show that A is linear and bounded.

Problem 3:

Let $g: \mathbb{R} \to \mathbb{R}$ be measurable. We define

$$\mathcal{D} := \{f \in L^2(\mathbb{R}) \,|\, gf \in L^2(\mathbb{R})\} \subset L^2(\mathbb{R})$$

and

 $T: \mathcal{D} \to L^2(\mathbb{R}), \quad f \mapsto Tf := gf.$

- (i) Show that $||(T \lambda)f||_2 \ge |\mathrm{Im}\lambda|||f||_2$ for all $f \in \mathcal{D}, \lambda \in \mathbb{C}^1$.
- (ii) Let $\lambda \in \mathbb{C} \setminus \mathbb{R}$. Show that the operator $T \lambda$ is bijective and the inverse $(T \lambda)^{-1}$ is bounded. Calculate the inverse $(T \lambda)^{-1}$ in this case. Show that both $T \lambda$ and T are closed operators.

5 pt.

5 pt.

6 pt.

¹Im λ is the imaginary part of λ .

Problem 4:

- (i) Give a counterexample that shows that the completeness of X is necessary in the closed graph theorem.
- (ii) Give a counterexample that shows that the completeness of Y is necessary in the closed graph theorem.