TECHNISCHE UNIVERSITÄT BERLIN INSTITUT FÜR MATHEMATIK J. Behrndt, C. Kreusler

Functional Analysis I

11th problem sheet

Please return your answers in the tutorials on July, 3rd / 4th.

Problem 1:

Let X = C([0,1]), equipped with the maximum norm, and let $k \in C([0,1]^2)$. Show that the operator

$$T: X \to X, \quad (Tu)(t) = \int_0^1 k(s, t)u(s)ds, \ t \in [0, 1], u \in X$$

is compact.

Problem 2:

Let X be a normed space and let $U \subset X$ and $V \subset X'$ be subspaces.

- (i) Show that both U^{\perp} and V_{\perp} are closed subspaces.
- (ii) Assume that U is closed. Show that

$$T: (X/U)' \to U^{\perp}, \quad f \mapsto f \circ q$$

is a well defined isomorphism where $q: X \to X/U$ is the canonical quotient mapping given by q(x) = [x] for $x \in X$.

(iii) Assume that U is closed. Show $U' \cong X'/U^{\perp}$.

Problem 3:

Ley X and Y be Banach spaces and let $\in L(X, Y)$ be a Fredholm operator, that is ran T is closed and both ker T and Y/ran T are finite dimensional¹. Show that the adjoint operator T' is also a Fredholm operator.

Problem 4:

Let X and Y be normed spaces and $T: X \to Y$ be linear. Assume that ran \overline{T} is finite dimensional. Show that there exist linearly independent $y_1, \ldots, y_n \in Y$ and $f_1, \ldots, f_n \in X'$ such that

$$Tx = \sum_{x=1}^{n} f_i(x)y_i$$
 for all $x \in X$.

6 pt.

5 pt.

5 pt.

4 pt.

¹In fact, one may show that the closedness of ran T already is implied by the two other conditions. The standard examples of Fredholm operators are of the form T = I - S where S is compact.