Functional Analysis I

12 th problem sheet

This is the last problem sheet.Please return your answers in the tutorials on July, 10th / 11th.

Problem 1:

Let $\left(H,(\cdot, \cdot)\right.$ be a Hilbert space and $U, V \subset H$ be closed subspaces. Let P_{U} and P_{V} the corresponding orthogonal projections. Show
(i) $U \subset V$ if and only if $P_{V} P_{U}=P_{U} P_{V}=P_{U}$.
(ii) $U \perp V$ if and only if $P_{U} P_{V}=0$.
(iii) $P_{U} P_{V}$ is an orthogonal projection (onto which subspace?) if and only if $P_{U} P_{V}=$ $P_{V} P_{U}$.

Problem 2:

8 pt.
Let $\left(H,(\cdot, \cdot)\right.$ be a Hilbert space, $f(z):=\sum_{n=0}^{\infty} a_{n} z^{n}$ a power series with radius of convergence $R \in(0, \infty]$. Let $A \in L(H)$ with $\|A\|<R$. Show that there exists a uniquely defined operator $T \in L(H)$ with

$$
(v, T u)=\sum_{n=0}^{\infty} a_{n}\left(v, A^{n} u\right), \quad u, v \in H
$$

Furthermore show

$$
\left\|T-\sum_{n=0}^{N} \alpha_{n} A^{n}\right\| \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

Remark: One often notates $T=f(A)$.

Problem 3:

3 pt.
Find a normed space $(X,\|\cdot\|)$ such that the norm $\|\cdot\|$ is not induced by an inner product.

Problem 4:

4 pt.
Let H be a vector space equipped with an inner product (\cdot, \cdot). Show that two elements $u, v \in H$ are orthogonal if and only if $\|u+\lambda v\|=\|u-\lambda v\|$ for all $\lambda \in \mathbb{K}$.

