TECHNISCHE UNIVERSITÄT BERLIN INSTITUT FÜR MATHEMATIK J. Behrndt, C. Kreusler

Functional Analysis I

12th problem sheet

This is the last problem sheet. Please return your answers in the tutorials on July, $10 {\rm th} \ / \ 11 {\rm th}.$

Problem 1:

Let $(H, (\cdot, \cdot))$ be a Hilbert space and $U, V \subset H$ be closed subspaces. Let P_U and P_V the corresponding orthogonal projections. Show

- (i) $U \subset V$ if and only if $P_V P_U = P_U P_V = P_U$.
- (ii) $U \perp V$ if and only if $P_U P_V = 0$.
- (iii) $P_U P_V$ is an orthogonal projection (onto which subspace?) if and only if $P_U P_V = P_V P_U$.

Problem 2:

Let $(H, (\cdot, \cdot))$ be a Hilbert space, $f(z) := \sum_{n=0}^{\infty} a_n z^n$ a power series with radius of convergence $R \in (0, \infty]$. Let $A \in L(H)$ with ||A|| < R. Show that there exists a uniquely defined operator $T \in L(H)$ with

$$(v,Tu) = \sum_{n=0}^{\infty} a_n(v,A^nu), \quad u,v \in H.$$

Furthermore show

$$||T - \sum_{n=0}^{N} \alpha_n A^n|| \to 0 \quad \text{as } N \to \infty.$$

Remark: One often notates T = f(A).

Problem 3:

Find a normed space $(X, \|\cdot\|)$ such that the norm $\|\cdot\|$ is not induced by an inner product.

Problem 4:

4 pt.

Let *H* be a vector space equipped with an inner product (\cdot, \cdot) . Show that two elements $u, v \in H$ are orthogonal if and only if $||u + \lambda v|| = ||u - \lambda v||$ for all $\lambda \in \mathbb{K}$.

$5 \, \mathrm{pt.}$

8 pt.

3 pt.