TECHNISCHE UNIVERSITÄT BERLIN INSTITUT FÜR MATHEMATIK J. Behrndt, C. Kreusler

Functional Analysis I

2nd problem sheet

Please return your answers in the exercise on April, 30th, or in the tutorium on May, 2nd. (Remember that there're no lectures / tutorials on May, 1st.)

Problem 1:

Let $p \in [1, \infty)$ and consider the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_p$ on C([0, 1]).

- (i) Find a sequence (f_n) in C([0,1]) and a number M > 0 such that $||f_n||_p \to 0$ as $n \to \infty$ and $||f_n||_{\infty} \ge M$ for all $n \in \mathbb{N}$. Show that $|| \cdot ||_{\infty}$ and $|| \cdot ||_p$ are not equivalent on C([0,1]).
- (ii) Find a sequence (f_n) in C([0,1]) which is bounded by one with respect to the maximum norm and which does not contain any convergent subsequence (this shows that the unit ball in $(C([0,1], \|\cdot\|_{\infty})$ is not compact).

Problem 2:

Show that for all $u \in l^1(\mathbb{N})$

$$\lim_{p \to \infty} \|u\|_p = \|u\|_{\infty}.$$

Problem 3:

A normed space $(X, \|\cdot\|)$ is called **strictly convex** if $\|x + y\| < 2$ holds for all $x, y \in X$, $\|x\| = \|y\| = 1$, $x \neq y$. (What does the unit ball looks like in this case?) Show that for $1 the spaces <math>l^p(\mathbb{N})$ are strictly convex, but $l^1(\mathbb{N})$ and $l^{\infty}(\mathbb{N})$ are not.

Problem 4:

Let $\Omega \subset \mathbb{R}^n$ (be measurable) and $1 \leq p \leq q \leq \infty$. Show that $L^q(\Omega) \subset L^p(\Omega)$ holds if and only if Ω has bounded measure. Show that in this case

$$||f||_p \le c ||f||_q, \quad f \in L^q(\Omega)$$

for some constant c which does not depend on f. We then call $L^q(\Omega)$ continuously embedded in $L^p(\Omega)$ which is often denoted by $L^q(\Omega) \hookrightarrow L^p(\Omega)$. Does $L^p(\Omega) \subset L^q(\Omega)$ hold if Ω has bounded (unbounded, resp.) measure?

4 pt.

4 pt.

6 pt.

6 pt.