TECHNISCHE UNIVERSITÄT BERLIN INSTITUT FÜR MATHEMATIK J. Behrndt, C. Kreusler

Functional Analysis I

3rd problem sheet

Please return your answers in the tutorials on May, 8th / 9th.

Problem 1:

Let $1 \leq p < \infty$, $(f_n) \subset L^p([0,1])$ and $f: [0,1] \to \mathbb{R}$. Prove or disprove the following propositions.

- (i) If (f_n) converges to f pointwisely, then it converges to f in $L^p([0,1])$, i.e. $||f_n - f||_p \to 0 \text{ as } n \to \infty.$
- (ii) If (f_n) converges to f uniformly, then it converges to f in $L^p([0,1])$.
- (iii) If (f_n) converges to f in $L^p([0,1])$, then it converges to f uniformly.

Problem 2:

Let X be a vector space and $\|\cdot\|$ and $\|\cdot\|$ two norms on X such that both $(X, \|\cdot\|)$ and $(X, \|\cdot\|)$ are complete. Furthermore assume that there is an M > 0 such that

$$\|x\| \le M \|x\|, \quad x \in X.$$

Show that $\|\cdot\|$ and $\|\cdot\|$ are equivalent.

Problem 3:

Show that the *Hilbert cube*

$$H := \{ x \in l^2(\mathbb{N}) \mid |x_n| \le 1/n, \ n \in \mathbb{N} \}$$

is a compact subset of $l^2(\mathbb{N})$.

Problem 4:

Let $(X, \|\cdot\|)$ be a Banach space. A subset $A \subset X$ is called *relatively compact* if the closure \overline{A} of A is compact. A is called *totally bounded* if for every $\epsilon > 0$ there are finitely many $x_1, \ldots, x_N \in A$ such that

$$A \subset \bigcup_{i=1}^{N} B(x_i, \epsilon).$$

Here for $x \in X$, r > 0 the set $B(x, r) := \{y \in X \mid ||y - x|| < r\}$ denotes the open ball centered in x with radius r.

Show that a subset $A \subset X$ is relatively compact if and only if A is totally bounded.

4 pt.

5 pt.

4 pt.

4 pt.

Problem 5:

Let $(X,\|\cdot\|)$ be a normed space. Show that the following are equivalent:

- (i) X is separable.
- (ii) $\overline{B}(0,1) := \{x \in X \mid ||x|| \le 1\}$ is separable.
- (iii) $S := \{x \in X \mid ||x|| = 1\}$ is separable.