TECHNISCHE UNIVERSITÄT BERLIN INSTITUT FÜR MATHEMATIK J. Behrndt, C. Kreusler

Functional Analysis I

5th problem sheet

Please return your answers in the tutorials on April, 22nd / 23rd.

Problem 1:

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces and $T: X \to Y$ linear and bounded, i.e. $T \in L(X, Y)$.

- (i) Are the kernel ker T and the range ran T linear subspaces of X, Y resp. ? Are they closed?
- (ii) Does always exist an $x \in X$, $x \neq 0$, such that ||Tx|| = ||T|| ||x||?

Problem 2:

Let $G: [0,\pi] \times [0,\pi] \to \mathbb{R}$ be defined by

$$G(x,y) := \begin{cases} \sin(\frac{1}{2}(x-\pi))\sin(\frac{1}{2}y) & \text{for } x > y, \\ \sin(\frac{1}{2}(y-\pi))\sin(\frac{1}{2}x) & \text{for } x \le y. \end{cases}$$

Furthermore define

$$T: L^{2}([0,\pi]) \to L^{2}([0,\pi]), \quad u \mapsto (Tf)(x) := 2\int_{0}^{\pi} G(x,y)f(y)dy.$$

- (i) Show that T is a well defined, linear and bounded operator.
- (ii) Let $f : [0, \pi] \to \mathbb{R}$ be continuous. Show that Gf solves the boundary value problem (BVP)

$$\begin{cases} u''(x) + \frac{1}{4}u'(x) = f(x), & x \in (0,\pi), \\ u(0) = u(\pi) = 0. \end{cases}$$

Problem 3:

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and let

$$r(A) := \max\{|\lambda| \mid \lambda \text{ is an eigenvalue of } A\}$$

be the spectral radius of A. We equip \mathbb{R}^n with the usual euclidean norm and consider the corresponding induced operator norm ||A||.

Show ||A|| = r(A) and prove that r(A) < 1 holds if and only if $||A^n|| \to 0$ as $n \to \infty$.

5 pt.

5 pt.

4 pt.

Problem 4:

6 pt.

Let $(X \cdot)$ be a real, strictly convex normed space and let $\Phi : X \to X$ be a surjective operator with $\Phi(0) = 0$ and

$$\|\Phi(x) - \Phi(y)\| = \|x - y\|$$
 for all $x, y \in X$.

Show that Φ is linear.

Hint: First show that $z = \frac{1}{2}(x+y)$ is the only element in X such that $||z-x|| = ||z-y|| = \frac{1}{2}||x-y||$ holds.

Remark: The statement is also true if X is not strictly convex, but much harder to prove then.

Bonus problem 1:

5 Bonus pt.

Let $(X, \|\cdot\|)$ be a normed space and let $S, T: X \to X$ be linear operators such that

$$ST - TS = Id_X$$

holds. Show that S or T has to to be unbounded.

Hint: First show $ST^{n+1} - T^{n+1}S = (n+1)T^n$ and assume that S and T are bounded.

Remark: If $X = C^{\infty}(\mathbb{R})$ equipped with some norm and (Sf)(t) := f'(t), (Tf)(t) = tf(t) then one may directly calculate that ST - TS = Id holds. In fact this is the onedimensional analogon of the Heisenberg uncertainty principle in quantum mechanics. S represents the momentum (Impuls) and T the position. In quantum mechanics the operators of interest are unbounded!