Functional Analysis I

5 th problem sheet

Please return your answers in the tutorials on April, 22nd / 23rd.

Problem 1:

4 pt.
Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces and $T: X \rightarrow Y$ linear and bounded, i.e. $T \in L(X, Y)$.
(i) Are the kernel ker T and the range $\operatorname{ran} T$ linear subspaces of X, Y resp. ? Are they closed?
(ii) Does always exist an $x \in X, x \neq 0$, such that $\|T x\|=\|T\|\|x\|$?

Problem 2:

5 pt.

Let $G:[0, \pi] \times[0, \pi] \rightarrow \mathbb{R}$ be defined by

$$
G(x, y):= \begin{cases}\sin \left(\frac{1}{2}(x-\pi)\right) \sin \left(\frac{1}{2} y\right) & \text { for } x>y \\ \sin \left(\frac{1}{2}(y-\pi)\right) \sin \left(\frac{1}{2} x\right) & \text { for } x \leq y\end{cases}
$$

Furthermore define

$$
T: L^{2}([0, \pi]) \rightarrow L^{2}([0, \pi]), \quad u \mapsto(T f)(x):=2 \int_{0}^{\pi} G(x, y) f(y) d y
$$

(i) Show that T is a well defined, linear and bounded operator.
(ii) Let $f:[0, \pi] \rightarrow \mathbb{R}$ be continuous. Show that $G f$ solves the boundary value problem (BVP)

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)+\frac{1}{4} u^{\prime}(x)=f(x), \quad x \in(0, \pi) \\
u(0)=u(\pi)=0
\end{array}\right.
$$

Problem 3:

5 pt.
Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and let

$$
r(A):=\max \{|\lambda| \mid \lambda \text { is an eigenvalue of } A\}
$$

be the spectral radius of A. We equip \mathbb{R}^{n} with the usual euclidean norm and consider the corresponding induced operator norm $\|A\|$.
Show $\|A\|=r(A)$ and prove that $r(A)<1$ holds if and only if $\left\|A^{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Problem 4:

Let ($X \cdot$) be a real, strictly convex normed space and let $\Phi: X \rightarrow X$ be a surjective operator with $\Phi(0)=0$ and

$$
\|\Phi(x)-\Phi(y)\|=\|x-y\| \quad \text { for all } x, y \in X
$$

Show that Φ is linear.
Hint: First show that $z=\frac{1}{2}(x+y)$ is the only element in X such that $\|z-x\|=$ $\|z-y\|=\frac{1}{2}\|x-y\|$ holds.

Remark: The statement is also true if X is not strictly convex, but much harder to prove then.

Bonus problem 1:

5 Bonus pt.

Let $(X,\|\cdot\|)$ be a normed space and let $S, T: X \rightarrow X$ be linear operators such that

$$
S T-T S=I d_{X}
$$

holds. Show that S or T has to to be unbounded.
Hint: First show $S T^{n+1}-T^{n+1} S=(n+1) T^{n}$ and assume that S and T are bounded.
Remark: If $X=C^{\infty}(\mathbb{R})$ equipped with some norm and $(S f)(t):=f^{\prime}(t),(T f)(t)=$ $t f(t)$ then one may directly calculate that $S T-T S=I d$ holds. In fact this is the onedimensional analogon of the Heisenberg uncertainty principle in quantum mechanics. S represents the momentum (Impuls) and T the position. In quantum mechanics the operators of interest are unbounded!

