Functional Analysis I

8th problem sheet

Please return your answers in the tutorials on June, 12th / 13th.

Problem 1:

4 pt.

Let $(X,\|\cdot\|)$ be a normed space and let U be a subspace of X. Show that

$$
\bar{U}=\bigcap_{f \in X^{\prime}, U \subset \operatorname{ker} f} \operatorname{ker} f .
$$

Problem 2:

5 pt.
Let $(X,\|\cdot\|)$ be a separable Banach space. Show that there exists a linear isometric Operator $T: X \rightarrow l^{\infty}(\mathbb{N})$. Is X isometric isomorph to a closed subspace of $l^{\infty}(\mathbb{N})$?

Problem 3:

5 pt.
A linear mapping $T: C([a, b]) \rightarrow \mathbb{R}$ is a positive functional on $C([a, b])$ if $T f \geq 0$ holds for all $f \in C([a, b])$ with $f \geq 0$. For other spaces of functions or sequences this definition shall be suitable adapted.
(i) Show that every positive functional T on $C([a, b])$ is continuous and calculate the norm of T.
(ii) Let $S: L^{\infty}([a, b]) \rightarrow \mathbb{R}$ be an extension of T with $\|S\|=\|T\|$. Show that S is a positive functional on $L^{\infty}([a, b])$.

Problem 4:

Consider $X=l^{\infty}(\mathbb{N})$ equipped with the norm $\|\cdot\|_{\infty}$. Show that there is a linear functional $F: X \rightarrow \mathbb{R}$ with the following properties:
(i) F is a positive functional on $l^{\infty}(\mathbb{N})$.
(ii) Let $S: X \rightarrow X$ be the shift operator defined by

$$
x=\left(x_{1}, x_{2}, \ldots\right) \mapsto S x:=\left(x_{2}, x_{3}, \ldots\right)
$$

Then $F(S x)=F x$ for all $x \in X$.
(iii) $F \mathbf{1}=1$, where $\mathbf{1}:=(1,1,1, \ldots)$.

Furthermore, show that F is continuous with norm $\|F\|=1$ and that for converging sequences $x=\left(x_{n}\right) \in l^{\infty}(\mathbb{N})$, we have $F x=\lim _{n \rightarrow \infty} x_{n}$. Finally show that F is not multiplicative in general, i.e. there are $x, y \in l^{\infty}(\mathbb{N})$ with $F(x \cdot y) \neq F(x) \cdot F(y)$.
Hint: Consider $p(x):=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} x_{i}$.

