TECHNISCHE UNIVERSITÄT BERLIN INSTITUT FÜR MATHEMATIK J. Behrndt, C. Kreusler

Functional Analysis I

8th problem sheet

Please return your answers in the tutorials on June, 12th / 13th.

Problem 1:

Let $(X, \|\cdot\|)$ be a normed space and let U be a subspace of X. Show that

$$\overline{U} = \bigcap_{f \in X', U \subset \ker f} \ker f$$

Problem 2:

Let $(X, \|\cdot\|)$ be a separable Banach space. Show that there exists a linear isometric Operator $T: X \to l^{\infty}(\mathbb{N})$. Is X isometric isomorph to a closed subspace of $l^{\infty}(\mathbb{N})$?

Problem 3:

A linear mapping $T: C([a,b]) \to \mathbb{R}$ is a *positive* functional on C([a,b]) if $Tf \ge 0$ holds for all $f \in C([a, b])$ with $f \geq 0$. For other spaces of functions or sequences this definition shall be suitable adapted.

- (i) Show that every positive functional T on C([a, b]) is continuous and calculate the norm of T.
- (ii) Let $S: L^{\infty}([a,b]) \to \mathbb{R}$ be an extension of T with ||S|| = ||T||. Show that S is a positive functional on $L^{\infty}([a, b])$.

Problem 4:

Consider $X = l^{\infty}(\mathbb{N})$ equipped with the norm $\|\cdot\|_{\infty}$. Show that there is a linear functional $F: X \to \mathbb{R}$ with the following properties:

- (i) F is a positive functional on $l^{\infty}(\mathbb{N})$.
- (ii) Let $S: X \to X$ be the shift operator defined by

$$x = (x_1, x_2, \dots) \mapsto Sx := (x_2, x_3, \dots).$$

Then F(Sx) = Fx for all $x \in X$.

(iii) $F\mathbf{1} = 1$, where $\mathbf{1} := (1, 1, 1, ...)$.

Furthermore, show that F is continuous with norm ||F|| = 1 and that for converging sequences $x = (x_n) \in l^{\infty}(\mathbb{N})$, we have $Fx = \lim_{n \to \infty} x_n$. Finally show that F is not multiplicative in general, i.e. there are $x, y \in l^{\infty}(\mathbb{N})$ with $F(x \cdot y) \neq F(x) \cdot F(y)$. Hint: Consider $p(x) := \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} x_i$.

6 pt.

4 pt.

5 pt.

5 pt.