Solution to the second problem :

(ii) $\Rightarrow(\mathbf{i})$: We have to show: X is not strictly convex \Rightarrow there exist linear independent $x, y \in X$ with $\|x+y\|=\|x\|+\|y\|$.

Let $x, y \in X$ be as in $(i i):\|x+y\|=\|x\|+\|y\|$ and x, y are linearly independent. W.l.o.g. we assume $x, y \neq 0$ and $\|x\| \leq\|y\|$. Set $\tilde{x}:=\frac{x}{\|x\|}$ and $\|\tilde{y}\|:=\frac{y}{\|y\| \|}$. Both \tilde{x} and \tilde{y} then are normed and $\tilde{x} \neq \tilde{y}$ as x and y are linearly independent. With the help of the inverse triangular inequality we calculate

$$
\begin{aligned}
\|\tilde{x}+\tilde{y}\| & =\left\|\frac{x}{\|x\|}+\frac{y}{\|y\|}\right\| \\
& =\left\|\frac{x+y}{\|x\|}-y\left(\frac{1}{\|x\|}-\frac{1}{\|y\|}\right)\right\| \\
& \geq \frac{\|x+y\|}{\|x\|}-\|y\|\left(\frac{1}{\|x\|}-\frac{1}{\|y\|}\right) \\
& =\frac{\|x\|+\|y\|}{\|x\|}-\frac{\|y\|}{\|x\|}+\frac{\|y\|}{\|y\|} \\
& =2 .
\end{aligned}
$$

Of course, we always have $\|\tilde{x}+\tilde{y}\| \leq\|\tilde{x}\|+\|\tilde{y}\|=2$ and hence

$$
\|\tilde{x}+\tilde{y}\|=2 .
$$

