Solution to the second problem :

(ii) \Rightarrow (i): We have to show: X is not strictly convex \Rightarrow there exist linear independent $x, y \in X$ with ||x + y|| = ||x|| + ||y||.

Let $x, y \in X$ be as in (*ii*): ||x + y|| = ||x|| + ||y|| and x, y are linearly independent. W.l.o.g. we assume $x, y \neq 0$ and $||x|| \leq ||y||$. Set $\tilde{x} := \frac{x}{||x||}$ and $||\tilde{y}|| := \frac{y}{||y||}$. Both \tilde{x} and \tilde{y} then are normed and $\tilde{x} \neq \tilde{y}$ as x and y are linearly independent. With the help of the inverse triangular inequality we calculate

$$\begin{split} \|\tilde{x} + \tilde{y}\| &= \|\frac{x}{\|x\|} + \frac{y}{\|y\|} \\ &= \|\frac{x+y}{\|x\|} - y(\frac{1}{\|x\|} - \frac{1}{\|y\|}) \| \\ &\geq \frac{\|x+y\|}{\|x\|} - \|y\| \left(\frac{1}{\|x\|} - \frac{1}{\|y\|}\right) \\ &= \frac{\|x\| + \|y\|}{\|x\|} - \frac{\|y\|}{\|x\|} + \frac{\|y\|}{\|y\|} \\ &= 2. \end{split}$$

Of course, we always have $\|\tilde{x} + \tilde{y}\| \le \|\tilde{x}\| + \|\tilde{y}\| = 2$ and hence

 $\|\tilde{x} + \tilde{y}\| = 2.$