
Solution to the second problem :
(ii)⇒(i): We have to show: X is not strictly convex ⇒ there exist linear
independent x, y ∈ X with ‖x + y‖ = ‖x‖ + ‖y‖.

Let x, y ∈ X be as in (ii): ‖x + y‖ = ‖x‖ + ‖y‖ and x, y are linearly
independent. W.l.o.g. we assume x, y 6= 0 and ‖x‖ ≤ ‖y‖. Set x̃ := x

‖x‖ and

‖ỹ‖ := y

‖y‖ . Both x̃ and ỹ then are normed and x̃ 6= ỹ as x and y are linearly
independent. With the help of the inverse triangular inequality we calculate

‖x̃ + ỹ‖ = ‖
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Of course, we always have ‖x̃ + ỹ‖ ≤ ‖x̃‖ + ‖ỹ‖ = 2 and hence

‖x̃ + ỹ‖ = 2.
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