Tutorials on April, 24th / 25th

Problem 1:

Let X be the space of sequences for which only a finite number of entries is non-zero. Show that $\left(X,\|\cdot\|_{1}\right)$ is a normed but not a Banach space.

Problem 2:

A normed space $(X,\|\cdot\|)$ is called strictly convex if $\|x+y\|<2$ holds for all $x, y \in X,\|x\|=\|y\|=1, x \neq y$. Show that the following are equivalent:
(i) X is not strictly convex.
(ii) There exist linear independent $x, y \in X$ with $\|x+y\|=\|x\|+\|y\|$.
(iii) The unit sphere $S=\{x \in X \mid\|x\|=1\}$ contains a segment of a straight line.

Problem 3:

Show that $C([0,1])$ is not strictly convex.

Problem 4:

Consider the sequences of functions

$$
x_{n}(t):=t^{n}-t^{n+1}, \quad y_{n}(t):=n^{3 / 2}\left(t^{n}-t^{n+1}\right), \quad t \in[0,1] .
$$

Are these sequences bounded or convergent in $C([0,1])$ or $L^{p}([0,1])$, $1 \leq p \leq 2$?

