Tutorium on May, 2nd

Problem 1:

Let (X, d), (\hat{X}, \hat{d}) be a metric spaces, $A \subset X$ compact and $f : X \to \hat{X}$ continuous. Show that f(A) is compact.

Problem 2:

For $f \in C^1[0,1]$ we define the expressions

$$\begin{split} \|\|f\|\|_{1} &:= |f(0)| + \|f'\|_{\infty}, \\ \|\|f\|\|_{2} &:= \max\{|f(0)|, \|f'\|_{\infty}\}, \\ \|\|f\|\|_{3} &:= \left(\int_{0}^{1} |f(t)|^{2} dt + \int_{0}^{1} |f'(t)|^{2} dt\right)^{1/2} \\ \|\|f\|\| &:= \|f\|_{\infty} + \|f'\|_{\infty}. \end{split}$$

Convice yourself that all these expressions define norms on C[0, 1]. Which of them are (pairwise) equivalent?

Problem 3:

Let (X,d) be a metric space and $A \subset X$ a closed subset. For $x \in X$ we define

$$d(x,A):=\inf_{y\in A}d(x,y).$$

(i) Show that $d(\cdot, A) : X \to \mathbb{R}$ is continuous and

$$A = \{ x \in X \mid d(x, A) = 0 \}.$$

(ii) Assume X to be finite dimensional. Show that $\delta = 0$ may be allowed in the Riesz Lemma (in contrast to the infinite dimensional case).

Problem 4:

Let (X, d) be a normed space and let $Y \subset X$ be a linear subspace. For a given $x \in X$ the *best approximation* in Y is an element $\hat{y} \in Y$ such that

$$||x - \hat{y}|| = d(x, Y) = \inf_{y \in Y} ||x - y||.$$

- (i) Show that best approximations need not be unique in general (but if $(X, \|\cdot\|)$ is strictly convex, uniqueness may be proven).
- (ii) Show that best approximations need not exist: Consider X = C([0, 1/2]) and let Y be the subspace of all polynomials. Show there is no best approximation to $f \in X$, f(t) = 1/(1-t), $t \in [0, 1/2]$.