Tutorium on May, 2nd

Problem 1:

Let $(X, d),(\hat{X}, \hat{d})$ be a metric spaces, $A \subset X$ compact and $f: X \rightarrow \hat{X}$ continuous. Show that $f(A)$ is compact.

Problem 2:

For $f \in C^{1}[0,1]$ we define the expressions

$$
\begin{aligned}
\|f\|_{1} & :=|f(0)|+\left\|f^{\prime}\right\|_{\infty}, \\
\|f\|_{2} & :=\max \left\{|f(0)|,\left\|f^{\prime}\right\|_{\infty}\right\} \\
\|f\|_{3} & :=\left(\int_{0}^{1}|f(t)|^{2} d t+\int_{0}^{1}\left|f^{\prime}(t)\right|^{2} d t\right)^{1 / 2} . \\
\|f\| & :=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty} .
\end{aligned}
$$

Convice yourself that all these expressions define norms on $C[0,1]$.
Which of them are (pairwise) equivalent?

Problem 3:

Let (X, d) be a metric space and $A \subset X$ a closed subset. For $x \in X$ we define

$$
d(x, A):=\inf _{y \in A} d(x, y)
$$

(i) Show that $d(\cdot, A): X \rightarrow \mathbb{R}$ is continuous and

$$
A=\{x \in X \mid d(x, A)=0\} .
$$

(ii) Assume X to be finite dimensional. Show that $\delta=0$ may be allowed in the Riesz Lemma (in contrast to the infinite dimesional case).

Problem 4:

Let (X, d) be a normed space and let $Y \subset X$ be a linear subspace. For a given $x \in X$ the best approximation in Y is an element $\hat{y} \in Y$ such that

$$
\|x-\hat{y}\|=d(x, Y)=\inf _{y \in Y}\|x-y\|
$$

(i) Show that best approximations need not be unique in general (but if $(X,\|\cdot\|)$ is strictly convex, uniqueness may be proven).
(ii) Show that best approximations need not exist: Consider $X=C([0,1 / 2])$ and let Y be the subspace of all polynomials. Show there is no best approximation to $f \in X, f(t)=1 /(1-t), t \in[0,1 / 2]$.

