Institut für Mathematik

Prof. Dr. P. Wittbold

Martha Hubski

www.math.tu-berlin.de/Vorlesungen/SS09/FA1/

Funktionalanalysis I

10. Übungsblatt

Abgabe: 01.07.2009 vor Beginn der Übung

1. Aufgabe (5 Punkte)

Seien X, Y Banachräume und $A \in L(X, Y)$. Beweise die folgenden Aussagen:

- a) $A': Y' \to X'$ ist ein abgeschlossener Operator.
- b) $A': Y' \to X'$ ist schwach*-stetig (d.h. $A': (Y', \sigma(Y', Y)) \to (X', \sigma(X', X))$ ist stetig).
- c) Ist A invertierbar, so ist auch $(A')^{-1} \in L(X',Y')$ mit $(A')^{-1} = (A^{-1})'$.

2. Aufgabe (5 Punkte)

Seien X und Y Banachräume. Seien weiterhin $A:X\to Y$ und $B:Y'\to X'$ linear mit

$$y'(Ax) = (By')(x) \quad \forall x \in X, y' \in Y'.$$

Zeige, dass dann die Operatoren A und B stetig sind.

3. Aufgabe (5 Punkte)

Seien X, Y Banachräume und $A \in L(X, Y)$. Beweise die folgenden Aussagen:

a) Ist A kompakt, so gilt für alle $(x_n)_n \subseteq X$, $x \in X$:

$$x_n \rightharpoonup x \implies Ax_n \rightarrow Ax$$
.

b) Ist X reflexiv und gilt für alle $(x_n)_n \subseteq X$, $x \in X$

$$x_n \rightharpoonup x \implies Ax_n \to Ax,$$

so ist A ein kompakter Operator.

4. Aufgabe (5 Punkte)

Für ein festes $y=(y_n)_n\in\ell^\infty$ definiere den Operator $A_y:\ell^2\to\ell^2$ durch

$$A_y(x) := (x_n y_n)_n$$
 für $x = (x_n)_n \in \ell^2$.

Beweise die folgenden Aussagen:

- a) A_y ist wohldefiniert, $A_y \in L(\ell^2)$ und $||A_y|| = ||y||_{\infty}$.
- b) A_y ist genau dann kompakt, wenn $y \in c_0$.

(Gesamtpunktzahl: 20 Punkte)