Institut für Mathematik

Prof. Dr. J. Liesen, O. Sète

http://www.math.tu-berlin.de/Vorlesungen/SS10/LinA1/ Stand: 30. Juni 2010

Lineare Algebra I 11. Hausaufgabe

Abgabe: 07.07.2010 vor der Vorlesung

1. Aufgabe (6 Punkte)

- (i) Bestimmen Sie alle $\alpha \in \mathbb{R}$ so, dass $\{[1+\alpha,2]^T, [1,2+\alpha]^T\}$ eine Basis von $\mathbb{R}^{2,1}$ ist.
- (ii) Sei $V = C([-1,1], \mathbb{R}) = \{f : [-1,1] \to \mathbb{R} \mid f \text{ stetig}\}$. Dann ist V ein \mathbb{R} -Vektorraum (siehe Analysis 1). Seien $f, g \in V$ mit $f(x) = x^2$ und g(x) = x |x|. Untersuchen Sie, ob f und g linear unabhängig sind.
- (iii) Seien K ein Körper und $a_1, \ldots, a_n \in K^{n,1}$. Zeigen Sie, dass a_1, \ldots, a_n genau dann linear unabhängig sind, wenn $\det([a_1, \ldots, a_n]) \neq 0$ ist.

2. Aufgabe (4 Punkte) Sei $V = \mathbb{Q}[t]|_{\leq 5} = \{p \in \mathbb{Q}[t] \mid \deg(p) \leq 5\}$. Seien $p_1 = t^5 + t^4$, $p_2 = t^5 - 7t^3$, $p_3 = t^5 - 1$, $p_4 = t^5 + 3t \in V$. Zeigen Sie, dass p_1, p_2, p_3, p_4 linear unabängig sind und ergänzen Sie

 $\{p_1, p_2, p_3, p_4\}$ zu einer Basis von V.

3. Aufgabe

(4 Punkte)

Sei V ein K-Vektorraum. Beweisen Sie die folgenden Aussagen:

(i) Sind $v_1, \ldots, v_n \in V$, $A \in K^{n,m}$ und $B \in K^{m,s}$, so gilt

$$((v_1,\ldots,v_n)A)B=(v_1,\ldots,v_n)(AB).$$

(ii) Seien $v_1, \ldots, v_n \in V$ linear unabhängig, $A \in K^{n,m}$ und $(w_1, \ldots, w_m) = (v_1, \ldots, v_n)A$. Dann sind w_1, \ldots, w_m linear unabhängig genau dann, wenn $\operatorname{Rang}(A) = m$. 4. Aufgabe (6 Punkte)

Sei K ein Körper, V ein K-Vektorraum, sowie U, W Unterräume von V mit

$$V = U + W := \{ u + w \mid u \in U, w \in W \}.$$

Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- (i) $V = U \oplus W$, d.h. V = U + W und $U \cap W = \{0\}$.
- (ii) Zu jedem $v \in V$ gibt es eindeutig bestimmte $u \in U$ und $w \in W$ mit v = u + w.
- (iii) Ist $u \in U \setminus \{0\}$ und $w \in W \setminus \{0\}$, so sind u und w linear unabhängig.

Zusatzaufgabe (4 Punkte)

Sei K' ein Teilkörper des Körpers K. Der K'-Vektorraum K habe endliche Dimension $k = \dim_{K'}(K) < \infty$. Sei V ein endlichdimensionaler K-Vektorraum. Schränkt man die Skalarmultiplikation von K auf K' ein, so wird V auch zu einem K'-Vektorraum. Zeigen Sie $\dim_{K'}(V) = k \dim_K(V)$.

Gesamtpunktzahl: 20