Systems and control theory
Series 1

Task 1:

- 1. Show that every behavior given in kernel or image representation defines a linear time-invariant dynamical system.
- 2. Let $A \in \mathbb{R}^{n,n}$, $B \in \mathbb{R}^{n,m}$, $C \in \mathbb{R}^{\ell,m}$, and $D \in \mathbb{R}^{\ell,m}$. Give a kernel representation of the state-space system

$$\dot{x}(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),$$
(1)

i.e., the system consisting of all trajectories $(y, x, u) \in \mathcal{C}_{\infty}^{\ell+n+m}$ such that (1) holds.

3. Give a kernel representation (in the style of 2.) of the system $M\ddot{x} + D\dot{x} + Kx = Bu$, where $M, D, K \in \mathbb{R}^{n,n}$ and $B \in \mathbb{R}^{n,m}$.

Task 2: \oplus

Show that the product of two unimodular matrices is again unimodular.

Task 3: \ominus

We call a matrix *elementary unimodular* if it is a square matrix that (when multiplied from the right) does one of the following:

- a) exchanges two rows;
- b) multiplies a row by a non-zeros constant;
- c) adds to one row i the a-multiple of another row $j \neq i$, where $a \in \mathbb{C}[\lambda]$ is arbitrary.

Understand, why elementary unimodular matrices are indeed unimodular. Then, use the techniques from the proof of the Smith canonical form to show the following:

- 1. For every polynomial matrix $P \in \mathbb{C}[\lambda]^{p,q}$ there exists a unimodular matrix $U \in \mathbb{C}[\lambda]^{p,p}$ (which can be written as the finite product of elementary unimodular matrices) such that UP is upper triangular.
- 2. Use 2. to prove that every unimodular matrix can be written as the product of a finite number of elementary unimodular matrices.

Task 4: ⊕

Let $P \in \mathbb{C}[\lambda]^{p,q}$. Show that for $\bullet \in \{\infty, c\}$ the following holds:

- 1. If $z \in \mathcal{C}^q_{\bullet}$ then also $P\left(\frac{d}{dt}\right) z \in \mathcal{C}^p_{\bullet}$.
- 2. If $z \in \mathcal{C}^q_{\bullet}$ then $P\left(\frac{d}{dt}\right)Q\left(\frac{d}{dt}\right)z = (PQ)\left(\frac{d}{dt}\right)z$.
- 3. If $z \in \mathcal{C}^q_{ullet}$ and $U \in \mathbb{C}[\lambda]^{q,q}$ is unimodular, then $U^{-1}\left(\frac{d}{dt}\right)\left(U\left(\frac{d}{dt}\right)z\right) = z$.

Remark: Some professors claim that 2. is trivial.

Task 5: \oplus

1. Let $P \in \mathbb{C}[\lambda]^{p,q}$ and let $S \in \mathbb{C}[\lambda]^{p,p}$ and $T \in \mathbb{C}[\lambda]^{q,q}$ both be unimodular. Show that

$$\mathcal{B}(SPT) = \mathcal{B}(PT) = T^{-1}\left(\frac{d}{dt}\right)\mathcal{B}(P).$$

and conclude that $\mathcal{B}(P) = T\left(\frac{d}{dt}\right)\mathcal{B}(PT)$.

2. Let $U \in \mathbb{C}[\lambda]^{q,m}$ and let $T \in \mathbb{C}[\lambda]^{q,q}$ and $S \in \mathbb{C}[\lambda]^{m,m}$ both be unimodular. Show that

$$\mathrm{image}_{\mathcal{C}_{\infty}}\left(T^{-1}US\right) = \mathrm{image}_{\mathcal{C}_{\infty}}\left(T^{-1}U\right) = T^{-1}\mathrm{image}_{\mathcal{C}_{\infty}}\left(U\right).$$

Task 6: ⊚

Let $\mathcal{A} \subset \mathcal{C}^r_{\infty}$ and $\mathcal{B} \subset \mathcal{C}^{q-r}_{\infty}$ be linear subspaces. Let $T_1 \in \mathbb{C}[\lambda]^{q,r}$ and $T_2 \in \mathbb{C}[\lambda]^{q,q-r}$ be such that $[T_1 \quad T_2]$ is unimodular. Show that

$$\begin{bmatrix} T_1 & T_2 \end{bmatrix} \begin{pmatrix} \frac{d}{dt} \end{pmatrix} \begin{bmatrix} \mathcal{A} \\ \mathcal{B} \end{bmatrix} = \left(T_1 \begin{pmatrix} \frac{d}{dt} \end{pmatrix} \mathcal{A} \right) \oplus \left(T_2 \begin{pmatrix} \frac{d}{dt} \end{pmatrix} \mathcal{B} \right),$$

where $egin{bmatrix} \mathcal{A} \\ \mathcal{B} \end{bmatrix} := \mathcal{A} \times \mathcal{B}$ denotes the Cartesian product.

Task 7:

Use the methodology introduced in the "Motivation"-slides to deduce the behavioral equations for the circuit

Show that $I_1 = -I_2$ and eliminate I_2 from the system. Then fix the lower wire to the ground, i.e., impose $V_2 = 0$, and eliminate V_2 and n_2 form the system, so that with the definitions

$$P(\lambda) := \begin{bmatrix} 1 & 1 & 1 & 0 \\ -R & 0 & 0 & 1 \\ 0 & \lambda L & 0 & -1 \end{bmatrix} \text{ and } z := \begin{bmatrix} I_R \\ I_L \\ I \\ V \end{bmatrix}$$
 (2)

the system is described by $P(\frac{d}{dt})z(t) = 0$.

- 1. Compute the Smith canonical form of P as $S(\lambda)P(\lambda)T(\lambda)=D(\lambda)$. Show that the transformation matrices S and T are indeed unimodular.
- 2. Compute a kernel-spanning matrix $U \in \mathbb{C}[\lambda]^{4,1}$ for P.
- 3. Give an image representation of the system.
- 4. Compute the echelon form of P.

Task 8: ⊚

Compute the echelon form of

$$R(\lambda) := \begin{bmatrix} 0 & 0 \\ 1 & \frac{z-1}{z} \\ \frac{1}{z} & \frac{z-1}{z^2} \end{bmatrix} \in \mathbb{C}(\lambda)^{3,2}$$