Fakultät II - Mathematik und Naturwissenschaften
 Institut für Mathematik
 Tobias Brüll

Systems and control theory
 Series 1

Task 1:

\oplus

1. Show that every behavior given in kernel or image representation defines a linear time-invariant dynamical system.
2. Let $A \in \mathbb{R}^{n, n}, B \in \mathbb{R}^{n, m}, C \in \mathbb{R}^{\ell, m}$, and $D \in \mathbb{R}^{\ell, m}$. Give a kernel representation of the state-space system

$$
\begin{align*}
\dot{x}(t) & =A x(t)+B u(t) \tag{1}\\
y(t) & =C x(t)+D u(t)
\end{align*}
$$

i.e., the system consisting of all trajectories $(y, x, u) \in \mathcal{C}_{\infty}^{\ell+n+m}$ such that (1) holds.
3. Give a kernel representation (in the style of 2.) of the system $M \ddot{x}+D \dot{x}+K x=B u$, where $M, D, K \in \mathbb{R}^{n, n}$ and $B \in \mathbb{R}^{n, m}$.

Task 2:

Show that the product of two unimodular matrices is again unimodular.

Task 3:

We call a matrix elementary unimodular if it is a square matrix that (when multiplied from the right) does one of the following:
a) exchanges two rows;
b) multiplies a row by a non-zeros constant;
c) adds to one row i the a-multiple of another row $j \neq i$, where $a \in \mathbb{C}[\lambda]$ is arbitrary.

Understand, why elementary unimodular matrices are indeed unimodular. Then, use the techniques from the proof of the Smith canonical form to show the following:

1. For every polynomial matrix $P \in \mathbb{C}[\lambda]^{p, q}$ there exists a unimodular matrix $U \in \mathbb{C}[\lambda]^{p, p}$ (which can be written as the finite product of elementary unimodular matrices) such that $U P$ is upper triangular.
2. Use 2. to prove that every unimodular matrix can be written as the product of a finite number of elementary unimodular matrices.

Task 4:

Let $P \in \mathbb{C}[\lambda]^{p, q}$. Show that for $\bullet \in\{\infty, c\}$ the following holds:

1. If $z \in \mathcal{C}_{\bullet}^{q}$ then also $P\left(\frac{d}{d t}\right) z \in \mathcal{C}_{\bullet}^{p}$.
2. If $z \in \mathcal{C}_{\bullet}^{q}$ then $P\left(\frac{d}{d t}\right) Q\left(\frac{d}{d t}\right) z=(P Q)\left(\frac{d}{d t}\right) z$.
3. If $z \in \mathcal{C}_{\bullet}^{q}$ and $U \in \mathbb{C}[\lambda]^{q, q}$ is unimodular, then $U^{-1}\left(\frac{d}{d t}\right)\left(U\left(\frac{d}{d t}\right) z\right)=z$.

Remark: Some professors claim that 2. is trivial.

1. Let $P \in \mathbb{C}[\lambda]^{p, q}$ and let $S \in \mathbb{C}[\lambda]^{p, p}$ and $T \in \mathbb{C}[\lambda]^{q, q}$ both be unimodular. Show that

$$
\mathcal{B}(S P T)=\mathcal{B}(P T)=T^{-1}\left(\frac{d}{d t}\right) \mathcal{B}(P)
$$

and conclude that $\mathcal{B}(P)=T\left(\frac{d}{d t}\right) \mathcal{B}(P T)$.
2. Let $U \in \mathbb{C}[\lambda]^{q, m}$ and let $T \in \mathbb{C}[\lambda]^{q, q}$ and $S \in \mathbb{C}[\lambda]^{m, m}$ both be unimodular. Show that

$$
\operatorname{image}_{\mathcal{C}_{\infty}}\left(T^{-1} U S\right)=\operatorname{image}_{\mathcal{C}_{\infty}}\left(T^{-1} U\right)=T^{-1} \text { image }_{\mathcal{C}_{\infty}}(U)
$$

Task 6:
Let $\mathcal{A} \subset \mathcal{C}_{\infty}^{r}$ and $\mathcal{B} \subset \mathcal{C}_{\infty}^{q-r}$ be linear subspaces. Let $T_{1} \in \mathbb{C}[\lambda]^{q, r}$ and $T_{2} \in \mathbb{C}[\lambda]^{q, q-r}$ be such that $\left[\begin{array}{ll}T_{1} & T_{2}\end{array}\right]$ is unimodular. Show that

$$
\left[\begin{array}{ll}
T_{1} & T_{2}
\end{array}\right]\left(\frac{d}{d t}\right)\left[\begin{array}{l}
\mathcal{A} \\
\mathcal{B}
\end{array}\right]=\left(T_{1}\left(\frac{d}{d t}\right) \mathcal{A}\right) \oplus\left(T_{2}\left(\frac{d}{d t}\right) \mathcal{B}\right),
$$

where $\left[\begin{array}{l}\mathcal{A} \\ \mathcal{B}\end{array}\right]:=\mathcal{A} \times \mathcal{B}$ denotes the Cartesian product.

Task 7:

Use the methodology introduced in the "Motivation"-slides to deduce the behavioral equations for the circuit

Show that $I_{1}=-I_{2}$ and eliminate I_{2} from the system. Then fix the lower wire to the ground, i.e., impose $V_{2}=0$, and eliminate V_{2} and n_{2} form the system, so that with the definitions

$$
P(\lambda):=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \tag{2}\\
-R & 0 & 0 & 1 \\
0 & \lambda L & 0 & -1
\end{array}\right] \text { and } z:=\left[\begin{array}{c}
I_{R} \\
I_{L} \\
I \\
V
\end{array}\right]
$$

the system is described by $P\left(\frac{d}{d t}\right) z(t)=0$.

1. Compute the Smith canonical form of P as $S(\lambda) P(\lambda) T(\lambda)=D(\lambda)$. Show that the transformation matrices S and T are indeed unimodular.
2. Compute a kernel-spanning matrix $U \in \mathbb{C}[\lambda]^{4,1}$ for P.
3. Give an image representation of the system.
4. Compute the echelon form of P.

Task 8:
Compute the echelon form of

$$
R(\lambda):=\left[\begin{array}{cc}
0 & 0 \\
1 & \frac{z-1}{z} \\
\frac{1}{z} & \frac{z-1}{z^{2}}
\end{array}\right] \in \mathbb{C}(\lambda)^{3,2}
$$

