Fakultät II - Mathematik und Naturwissenschaften
Institut für Mathematik
Tobias Brüll

Systems and control theory

Series 3

Task 1:

1. Give the Smith form for every block in the Kronecker canonical from separately.
2. Give a prime polynomial kernel spanning matrix for every block in the Kronecker canonical form separately.
3. Give the behavior for every block in the Kronecker canonical form separately.
4. Give the complete Smith form via the Kronecker canonical from.
5. Give a prime polynomial kernel spanning matrix via the Kronecker canonical form.
6. Give the complete behavior via the Kronecker canonical form.

Task 2:
Specify for each block in the Kronecker canonical form if it represents an autonomous system. If not give an input/output partition.

Task 3:

Define the matrices $A:=\left[\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right]$ and $B:=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Then, formulate the state-space system $\dot{x}=A x+B u$ in behavior form and give the Kronecker canonical form of the resulting first-order matrix polynomial.

Task 4:

For the system $\ddot{x}=A x+B u$ give a first order formulation which introduces less variables, than the (behavioral) canonical linearization (namely m less).

Task 5:

Assume that P is left prime and that U unimodular. Partition the rows of the product $U P$ into the form $U P=:\left[\begin{array}{l}P_{1} \\ P_{2}\end{array}\right]$. Show that P_{1} and P_{2} are also left prime.

Task 6:

1. Let $U \in \mathbb{C}[\lambda]^{p, p}$. Then U is unimodular if and only if the canonical linearization of U is unimodular.
2. Let $U \in \mathbb{C}[\lambda]^{p, q}$. Then U is (left/right) prime if and only if the canonical linearization of U is (left/right) prime.

Task 7:
Let $R \in \mathbb{C}[\lambda]^{p, q}$ have full row rank. Show that in this case a partition (P, Q) of R is input/output if and only if P is invertible.

Consider the example from the last series:

Figure 1: A simple RL circuit
With the definitions

$$
P(\lambda):=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \tag{1}\\
-R & 0 & 0 & 1 \\
0 & \lambda L & 0 & -1
\end{array}\right] \quad \text { and } \quad z:=\left[\begin{array}{c}
I_{R} \\
I_{L} \\
I \\
V
\end{array}\right]
$$

the system was given by $\mathcal{B}(P)$.

1. Give all input/output partitions of P.
2. Compute the Kronecker canonical from of P.

Task 9:

1. Let $A \in \mathbb{C}^{n, n}$. Show that $\lambda I-A \in \mathbb{C}[\lambda]_{1}^{n, n}$ is regular (over $\mathbb{C}(\lambda)$) by using the Jordan form and Lemma 1.9.
2. Use the canonical linearization to conclude that for every matrix polynomial $P(\lambda)=\sum_{i=0}^{K} \lambda^{i} P_{i} \in$ $\mathbb{C}[\lambda]_{K}^{n, n}$ in which the highest coefficient P_{K} is invertible (over \mathbb{C}) we have that P is regular.
3. Conclude that for nonsquare polynomial matrices $P(\lambda)=\sum_{i=0}^{K} \lambda^{i} P_{i} \in \mathbb{C}[\lambda]^{p, q}$ in which the highest coefficient P_{K} has full (row or column) rank we have that also P has full (row or column) rank (over $\mathbb{C}(\lambda)$).
4. Give a counter example which shows that there exist polynomial matrices $P(\lambda)=\sum_{i=0}^{K} \lambda^{i} P_{i} \in$ $\mathbb{C}[\lambda]^{p, q}$ which have full (row or column) rank (over $\left.\mathbb{C}(\lambda)\right)$ but in which the highest coefficient P_{K} does not have full (row or column) rank.

Task 10:
Let $A, E, M, D, K \in \mathbb{C}^{n, n}, B, B_{1} \in \mathbb{C}^{n, m}$, and $D \in \mathbb{C}^{m, m}$. Let the dimensions of the involved functions be given by $x \in \mathcal{C}_{\infty}^{n}$ and $u \in \mathcal{C}_{\infty}^{m}$. Can you easily give an input/output partition for each of the following systems? Are the systems autonomuous?

1. $\dot{x}(t)=A x(t)+B u(t)$
2. $\ddot{x}(t)=A x(t)+B u(t)$
3. $E \dot{x}(t)=A x(t)$ where $\lambda E-A \in \mathbb{C}[\lambda]^{n, n}$ is invertible/regular (over $\mathbb{C}(\lambda)$).
4. $E \dot{x}(t)=A x(t)$ where $\lambda E-A \in \mathbb{C}[\lambda]^{n, n}$ is not invertible (over $\mathbb{C}(\lambda)$).
5. $M \ddot{x}(t)+D \dot{x}(t)+K x(t)=B u(t)+B_{1} \dot{u}(t)$ where M is invertible (over \mathbb{R}).
6. The following system with invertible M :

$$
\left\{\begin{array}{rlrl}
M \ddot{x}(t) & = & K x(t) & +B u(t) \\
\dot{u}(t) & = & D u(t)
\end{array}\right.
$$

Remark: Use the result from Task 9.

