Systems and control theory

Series 6

Task 1:

Implement the staircase algorithm for state-space systems $\dot{x}=A x+B u$ with $A \in \mathbb{C}^{n, n}$ and $B \in \mathbb{C}^{n, m}$ as described in the proof of Theorem 6 from the handout "Checking controllability numerically" in MATLAB. Then use the implementation to verify the analytically derived result of Series 5, Task 13, part 2 by setting $m_{1}=m_{2}=1$ and choosing several values for $d_{1}, d_{2}, k_{1}, k_{2}>0$.
For the implementation, download from the website the zip-file and delete all the code (but not the initial comments and the function declaration) from the file staircase_form_AB.m. Then rewrite the code. Thereby, use the supplied function in compress_rows.m to make the rank decision. The correctness of the algorithm can be checked by calling

```
>> [err, A, B, corr_n] = multi_test_AB();
```

This function randomly generates and tests multiple examples.

Task 2:

Let $A \in \mathbb{C}^{n, n}$ and $B \in \mathbb{C}^{n, m}$. Define $P(\lambda):=\lambda\left[\begin{array}{ll}I & 0\end{array}\right]-\left[\begin{array}{ll}A & B\end{array}\right]$. Show that $\mathcal{B}(P)$ is stabilizable if and only if in the Kalman decomposition of (A, B) the matrix in the $(2,2)$ block A_{3} only has eigenvalues with negative real part.

Task 3:

Specify how the staircase algorithm can be used to check stabilizability, observability, and, reconstructability.

Task 4:

Let $U \in \mathbb{C}[\lambda]^{q, m}$ be right prime and consider the system $\mathcal{B}:=\operatorname{image}_{\mathcal{C}_{\infty}}\left(U\left(\frac{d}{d t}\right)\right)$. Show that there exists a left prime polynomial $P \in \mathbb{C}^{p, q}$ such that $\mathcal{B}=\mathcal{B}(P)$.

Task 5:

Complete the proof of Theorem 2.21.

Task 6:

Let $A \in \mathbb{C}^{n, n}, B \in \mathbb{C}^{n, m}, C \in \mathbb{C}^{p, n}$, and $D \in \mathbb{C}^{p, m}$ and define

$$
\tilde{\mathcal{B}}:=\left\{(y, x, u) \in \mathcal{C}^{p+n+m} \left\lvert\, \begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{array}\right.\right\}
$$

Show that $(A, C) \in \mathbb{C}^{n, n} \times \mathbb{C}^{p, n}$ is observable if and only if the following holds:
For all $\left(y_{1}, x_{1}, u_{1}\right),\left(y_{2}, x_{2}, u_{2}\right) \in \tilde{\mathcal{B}}$ with $y_{1}(t)=y_{2}(t)$ and $u_{1}(t)=u_{2}(t)$ for all $t \in\left[t_{0}, t_{1}\right]$ we have

$$
x_{1}(t)=x_{2}(t), \quad \text { for all } t \in\left[t_{0}, t_{1}\right] .
$$

Task 7:

In Series 3 we considered an electrical circuit with behavior $\mathcal{B}(\lambda F+G)$, where

$$
\lambda F+G:=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-R & 0 & 0 & 1 \\
0 & \lambda L & 0 & -1
\end{array}\right] \quad \text { and } \quad z:=\left[\begin{array}{c}
I_{R} \\
I_{L} \\
I \\
V
\end{array}\right] .
$$

Is (I_{R}, I_{L}, V) observable/reconstructable from I ?
Is ($\left.I_{R}, I_{L}, I\right)$ observable/reconstructable from V ?
Is (I_{R}, I, V) observable/reconstructable from I_{L} ?
After answering these questions, apply the staircase algorithm to all cases to determine the canonical from, from which observability/reconstructability can be read off.

Task 8:

Consider the mass-spring-damper system

where $q_{1}, q_{2} \in \mathcal{C}_{\infty}^{1}$ describe the horizontal displacement, $f \in \mathcal{C}_{\infty}^{1}$ describe externally applied forces, and $k_{1}, d_{1}, k_{2}, d_{2}>0$ are the stiffness and damping coefficients.
By Newton's second law the equation of motion for the second mass is

$$
m_{2} \ddot{q}_{2}(t)=d_{2}\left(\dot{q}_{1}(t)-\dot{q}_{2}(t)\right)+k_{2}\left(q_{1}(t)-q_{2}(t)\right),
$$

since the relative velocity of the second mass against the first mass is $\dot{q}_{1}(t)-\dot{q}_{2}(t)$ and this velocity determines the damping force (the higher the relative velocity, the higher the damping force; we assume a linear damper). Similar, the second term describes the force from the spring (Hooke's law). For the first mass we obtain

$$
m_{1} \ddot{q}_{1}(t)=-d_{1} \dot{q}_{1}(t)-k_{1} q_{1}(t)-d_{2}\left(\dot{q}_{1}(t)-\dot{q}_{2}(t)\right)-k_{2}\left(q_{1}(t)-q_{2}(t)\right)+f(t),
$$

where $f \in \mathcal{C}_{\infty}^{1}$ is the external force.
One can consider this problem as a model problem for a tuned mass damper (as used to stabilize the motion of skyscrapers). In this case the m_{1}, d_{1}, and k_{1} are given (they are estimated from the construction of the skyscraper) and one wants to choose the m_{2}, d_{2}, and k_{2} in such a way that the following is fulfilled: external forces f (like winds or earthquake) which act on the building (i.e., on q_{1}) lead to small dislocations of the building and m_{2} is small compared to m_{1}.
The behavioral equations in matrix form are then

$$
\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{q}_{1} \\
\ddot{q}_{2}
\end{array}\right]+\left[\begin{array}{cc}
d_{1}+d_{2} & -d_{2} \\
-d_{2} & d_{2}
\end{array}\right]\left[\begin{array}{l}
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right]+\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}
\end{array}\right]\left[\begin{array}{l}
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] f
$$

1. For which coefficients m_{i}, d_{i}, k_{i} is q_{1} observable/reconstructable from $\left(q_{2}, f\right)$?
2. For which coefficients is q_{2} observable/reconstructable from $\left(q_{1}, f\right)$?
3. Introduce the additional output variable $y=q_{i}$, with $i=1,2$ consider the forces to be input $f=: u$, perform and order reduction, and rewrite the system in the from

$$
\dot{x}(t)=A x(t)+B u(t), \quad y(t)=C_{i} x(t)
$$

where $A \in \mathbb{C}^{4,4}, B \in \mathbb{C}^{4,1}$, and $C_{i} \in \mathbb{C}^{1,4}$. Use the MATLAB staircase implementation from Task 1 to verfiy the analytical results from 1 . and 2 . numerically.

