Sommersemester 2012

Systems and control theory Series 7

Task 1:

Give the proof of the following proposition from the lecture: Let $R \in \mathbb{C}[\lambda]^{r,q}$ and $P \in \mathbb{C}[\lambda]^{p,q}$. Show that then the following are equivalent:

- 1. There exists a controller $C \in \mathbb{C}[\lambda]^{s,q}$ such that $\mathcal{B}(R) = \mathcal{B}\left(\begin{bmatrix} P \\ C \end{bmatrix}\right)$.
- 2. $\mathcal{B}(R) \subset \mathcal{B}(P)$.

Task 2:

Let $P \in \mathbb{C}[\lambda]^{p,q}$ be such that $\mathcal{B}(P) = \mathcal{C}_{\infty}^q$. Show that then P = 0.

Remark: First show the statement for p=q=1. Use this to show the result for $p \geq 1$ and q=1. Finally, generalize to the most general case.

Task 3:

Let $D \in \mathbb{C}[\lambda]^{r,r}$ be diagonal and let $P \in \mathbb{C}[\lambda]^{p,r}$ be such that

$$\forall \alpha \in \mathcal{C}^r_{\infty} \text{ with } D\left(\frac{d}{dt}\right)\alpha = 0 \qquad \Rightarrow \qquad P\left(\frac{d}{dt}\right)\alpha = 0.$$

Then there exists a $M \in \mathbb{C}[\lambda]^{p,r}$ such that MD = P.

Remark: First show the statement for p=r=1. Use this to show the result for $p \ge 1$ and r=1. Finally, generalize to the most general case.

Task 4:

Let $D \in \mathbb{C}[\lambda]^{r,q}$ have full row rank (over $\mathbb{C}(\lambda)$) and let $M \in \mathbb{C}[\lambda]^{p,r}$. Show that

$$\mathcal{B}(MD) = \mathcal{B}(D) \qquad \Leftrightarrow \qquad \mathcal{B}(M) = \{0\}.$$

Remark: For " \Rightarrow " use Lemma 1.17 a).

Task 5:

Show that the assumption of controllability in Theorem 3.3 is really necessary. More precisely, show that there exists a $P \in \mathbb{C}[\lambda]^{p,q}$ for which $\mathcal{B}(P)$ is not controllable and an $R \in \mathbb{C}[\lambda]^{r,q}$ with $\mathcal{B}(R) \subset \mathcal{B}(P)$ such that for every $C \in \mathbb{C}[\lambda]^{c,q}$ with

$$\mathcal{B}\left(\begin{bmatrix} P\\C\end{bmatrix}\right) = \mathcal{B}(R),$$

we have $\operatorname{rank}_{\mathbb{C}(\lambda)}\left(P\right) + \operatorname{rank}_{\mathbb{C}(\lambda)}\left(C\right) > \operatorname{rank}_{\mathbb{C}(\lambda)}\left(\begin{bmatrix}P\\C\end{bmatrix}\right)$.

Remark: One can choose p = q = 1.

Task 6:

Give the details of the proof of Corollary 3.5., i.e., show that for stabilizable $\mathcal{B}(P)$ with $P \in \mathbb{C}[\lambda]^{p,q}$ there exists a regular, stabilizable, left prime controller which stabilizes the system.

Task 7:

Assume that $C_1 \in \mathbb{C}[\lambda]^{c_1,q_1}$ is a regular (and stabilizing) controller for $P_1 \in \mathbb{C}[\lambda]^{p_1,q_1}$ and $C_2 \in \mathbb{C}[\lambda]^{c_2,q_2}$ is a regular (and stabilizing) controller for $P_2 \in \mathbb{C}[\lambda]^{p_2,q_2}$.

Show that then
$$\begin{bmatrix} C_1 & \\ & C_2 \end{bmatrix}$$
 is a regular (and stabilizing) controller for $\begin{bmatrix} P_1 & \\ & P_2 \end{bmatrix}$.

Task 8:

Assume that $P \in \mathbb{C}[\lambda]^{p,q}$ has full column rank. Show that then there exists no regular controller (with at least one row) for $\mathcal{B}(P)$.

Task 9:

Let $P_1, P_2 \in \mathbb{C}[\lambda]^{p,q}$ be with $\mathcal{B}(P_1) = \mathcal{B}(P_2)$. Show that then also the zeros are the same, i.e., we have $\mathfrak{F}(P_1) = \mathfrak{F}(P_2)$.

Task 10:

Consider the familiar electric circuit with behavior $\mathcal{B}(\lambda F + G)$, where

$$\lambda F + G(\lambda) := \begin{bmatrix} 1 & 1 & 1 & 0 \\ -R & 0 & 0 & 1 \\ 0 & \lambda L & 0 & -1 \end{bmatrix} \quad \text{and} \quad z := \begin{bmatrix} I_R \\ I_L \\ I \\ V \end{bmatrix}.$$

- 1. Assume that we attach a capacitor across the external wires, i.e., assume we impose the additional constraint $C\dot{V} = I$ with C > 0. Is such a capacitor a regular controller? Is it stabilizing?
- 2. Repeat 2.) for the case that a resistor $V = \tilde{R}I$ or a inductor $\tilde{L}\dot{I} = V$ is attached across the external wires.
- 3. Determine polynomials $c_I, c_V \in \mathbb{C}[\lambda]$ such that the controller $c_I\left(\frac{d}{dt}\right)I = c_V\left(\frac{d}{dt}\right)V$ is **not** regular

Task 11:

Let $m, d, k \in \mathbb{R}_{>0}$ and consider the mass-spring-damper system

$$\mathcal{B}\left(\begin{bmatrix}\lambda^2m+\lambda d+k & -1\end{bmatrix}\right) = \left\{\begin{bmatrix}q\\f\end{bmatrix} \in \mathcal{C}_{\infty}^2 \middle| m\ddot{q}+d\dot{q}+k = f\right\}.$$

Assume that we can measure the velocity of the mass \dot{q} and we want to use this information to set the external force f. Since here we only deal with linear equations/controllers we make the ansatz $c\dot{q} = u$ where $c \in \mathbb{R}$ can also be called the *gain* of the controller. This leads to the system $\mathcal{B}(P)$ with

$$P(\lambda) := \begin{bmatrix} \lambda^2 m + \lambda d + k & -1 \\ \lambda c & -1 \end{bmatrix}.$$

1.) For which c is this controller regular? For which c is the resulting system autonomous?

For autonomous systems all solutions have the form $\sum_{\lambda \in \mathfrak{Z}(P)} p_{\lambda}(t) e^{\lambda t}$ where for each $\lambda \in \mathfrak{Z}(P)$ the functions p_{λ} are polynomials. If one now concentrates on the exponential terms we see that $e^{\lambda t} \stackrel{t \to \infty}{\to} 0$ if and only if $\text{Re}(\lambda) < 0$ (cf. Lemma 3.3) and the convergence is quicker, the smaller the real part of λ is.

2.) Compute the gain c which is optimal in the sense that the maximum real part of a zeros of P is as small as possible.