Fakultät II - Mathematik und Naturwissenschaften
 Institut für Mathematik

Tobias Brüll

Systems and control theory

Series 10

Task 1:

The goal of this task is to give a result similar to Theorem 4.3 and Theorem 4.4 for matrices $P \in \mathbb{C}^{p, q}$ which are not polynomials, $H=H^{*} \in \mathbb{C}^{q, q}$, and vectors $z \in \mathbb{C}^{q}$ which do not depend on time. We therefore call H non-negative w.r.t. P if $0 \leq y^{*} H y$ for all $y \in \operatorname{kernel}(P)$.
Let $\hat{z} \in \mathbb{C}^{q}$, let $b \in \mathbb{C}^{p}$. Show that then the following are equivalent:

1. We have that H is non-negative w.r.t. to P and there exists a $\hat{\mu} \in \mathbb{C}^{p}$ such that

$$
\left[\begin{array}{cc}
0 & P \\
P^{*} & H
\end{array}\right]\left[\begin{array}{l}
\hat{\mu} \\
\hat{z}
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right] .
$$

2. We have that \hat{z} solves the optimization problem

$$
\hat{z}^{*} H \hat{z}=\inf _{P z=b} z^{*} H z
$$

Hint: Adapt the proves of the mentioned Theorems.

Task 2:

Let the polynomial $N(\lambda)=\sum_{i=0}^{K} \lambda^{i} N_{i} \in \mathbb{C}[\lambda]^{n, n}$ be para-Hermitian $N=N^{\sim}$. Show that the coefficients are Hermitian $N_{i}=N_{i}$ for even i and skew-Hermitian $N_{i}=-N_{i}^{*}$ for odd i. Also see Series 9 , Task 2 .

Task 3: Let $M \in \mathbb{C}^{n, n}$.
Show that if $M=M^{*}$ is Hermitian we have that $x^{*} M x \in \mathbb{R}$ is real for all $x \in \mathbb{C}^{n}$.
Show that if $M=-M^{*}$ is skew-Hermitian we have that $x^{*} N x \in \imath \mathbb{R}$ is imaginary for all $x \in \mathbb{C}^{n}$.

Task 4:
Show that for $f: \mathbb{R} \rightarrow \mathbb{C}$ we have $\int_{t_{0}}^{t_{1}} \operatorname{Re}\{f(t)\} d t=\operatorname{Re}\left\{\int_{t_{0}}^{t_{1}} f(t) d t\right\}$ for all $t_{0}<t_{1}$.

Task 5:

Let $A \in \mathbb{C}^{n, n}, B \in \mathbb{C}^{n, m}, Q=Q^{*} \in \mathbb{C}^{n, n}, S \in \mathbb{C}^{n, m}$, and $R=R^{*} \in \mathbb{C}^{m, m}$ be such that $0 \leq\left[\begin{array}{cc}Q & S \\ S^{*} & R\end{array}\right]$.
Let $x_{0} \in \mathbb{C}^{n}$. Show that then $(\hat{x}, \hat{u}) \in \mathcal{B}_{+}\left(\left[\begin{array}{ll}\lambda I-A & -B]\end{array}\right)=: \mathcal{B}_{+}(\lambda F+G)\right.$ is a solution of the optimal control problem

$$
\inf _{\substack{\left(x, u \in \mathcal{B}_{+}(\lambda F+G) \\ x(0)=x_{0}\right.}} \int_{0}^{\infty} x^{*}(t) Q x(t)+2 \operatorname{Re}\left(x^{*}(t) S u(t)\right)+u^{*}(t) R u(t) d t
$$

if and only if there exists a $\hat{\lambda} \in \mathcal{C}_{+}^{n}$ such that

$$
\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{\hat{x}}(t) \\
\dot{\hat{\lambda}}(t) \\
\dot{\hat{u}}(t)
\end{array}\right]=\left[\begin{array}{ccc}
A & 0 & B \\
-Q & -A^{*} & -S \\
S^{*} & B^{*} & R
\end{array}\right]\left[\begin{array}{c}
\hat{x}(t) \\
\hat{\lambda}(t) \\
\hat{u}(t)
\end{array}\right] \quad \text { for all } t \geq 0
$$

Hint: Use Theorem 4.3, Theorem 4.4, and Theorem 4.5.

Task 6:

Let $V \in \mathbb{C}^{2 p, 2 p}$ be unitary and set $J:=\left[\begin{array}{cc}0 & I \\ -I & 0\end{array}\right]$. Show that then $V^{*} J V=J$ if and only if there exist $V_{1}, V_{2} \in \mathbb{C}^{p, p}$ such that $V=\left[\begin{array}{cc}V_{1} & V_{2} \\ -V_{2} & V_{1}\end{array}\right]$.

Task 7: (Complex Householder reflections)
Let $x \in \mathbb{C}^{p} \backslash\{0\}$ and write the last entry of x in the form $x_{p}=r e^{\imath \omega}$ with $r, \omega \in \mathbb{R}$. Define $u:=$ $x+e^{\imath \omega}\|x\|_{2} e_{p}$, where e_{p} denotes the last unit vector and $\|\cdot\|_{2}$ denotes the euclidian norm. Show that $P:=I-2 \frac{u u^{*}}{u^{*} u}$ is unitary and that $P x=-e^{\imath \omega}\|x\|_{2} e_{p}$.

Task 8:

Show that the assumptions "non-imaginary zero" in Lemma 4.6 and Theorem 4.7 is really necessary. Therefore, proceed along the following lines:
With a real number $a \in \mathbb{R}$ consider the para-Hermitian polynomial matrix

$$
N_{a}(\lambda):=\lambda \underbrace{\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]}_{=: J}+\left[\begin{array}{cc}
1 & 0 \\
0 & a
\end{array}\right]
$$

(a) Give the zeros $\lambda_{1}, \lambda_{2} \in \mathfrak{Z}\left(N_{a}\right)$ in dependence of a. Visualize the result graphically. For one of the zeros (say λ_{1}) give an $x_{1} \in \mathbb{C}^{2} \backslash\{0\}$ such that $N\left(\lambda_{1}\right) x_{1}=0$.
(b) For $a<0$ construct a unitary matrix $V \in \mathbb{C}^{2,2}$ with $V^{*} J V=J$ such that with x_{1} from (a) we have $V x_{1}=\left[\begin{array}{l}0 \\ \beta\end{array}\right]$ with $\beta \in \mathbb{R}$.
(c) For $a>0$ show that there does not exist a unitary matrix $V \in \mathbb{C}^{2,2}$ with $V^{*} J V=J$ such that with x_{1} from (a) we have $V^{*} x_{1}=\left[\begin{array}{l}0 \\ \beta\end{array}\right]$ with $\beta \in \mathbb{C}$.
(d) Show that for $a>0$ there does not exist a unitary matrix $V \in \mathbb{C}^{2,2}$ with $V^{*} J V=J$ such that

$$
V^{*} N(\lambda) V=\lambda J+\left[\begin{array}{cc}
m_{1} & m_{2} \\
\overline{m_{2}} & 0
\end{array}\right]
$$

with $m_{1} \in \mathbb{R}$ and $m_{2} \in \mathbb{C}$, i.e., that in this case one cannot transform N to the para-Hermitian Schurform of Theorem 4.7.

Hint: For (c) \& (d) use Task 6.

Task 9:

Complete the proof of Theorem 4.7:

1. Verify the base case.
2. Let $M_{11}=M_{11}^{*}, M_{12}, M_{22}=M_{22}^{*} \in \mathbb{C}^{p-1, p-1}$ and $\lambda_{0} \in \mathbb{C}$ with $\operatorname{Re}\left(\lambda_{0}\right) \neq 0$. Show that

$$
\begin{aligned}
& \mathfrak{Z}\left(\lambda\left[\begin{array}{cc}
0 & I_{p} \\
-I_{p} & 0
\end{array}\right]+\left[\begin{array}{cccc}
M_{11} & \times & M_{12} & 0 \\
\times & \times & \times & -\lambda_{0} \\
M_{12}^{*} & \times & M_{22} & 0 \\
0 & -\overline{\lambda_{0}} & 0 & 0
\end{array}\right]\right) \\
= & \mathfrak{Z}\left(\lambda\left[\begin{array}{cc}
0 & I_{p-1} \\
-I_{p-1} & 0
\end{array}\right]+\left[\begin{array}{cc}
M_{11} & M_{12} \\
M_{12}^{*} & M_{22}
\end{array}\right]\right) \cup\left\{\lambda_{0},-\overline{\lambda_{0}}\right\},
\end{aligned}
$$

where the \times-symbols denote arbitrary scalars or vectors of matching dimensions.

