
Equations of motion for an inverted double pendulum on

a cart (in generalized coordinates)

Consider a double pendulum which is mounted to a cart, as in the following graphic:
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The length of the first rod is denoted by l1 and the length of the second rod by l2. The
mass of the cart is denoted by m. We assume that the rods have no mass, that on the top
of the first rod (and thus at the bottom of the second rod) there is a weight of mass m1,
and that on the top of the second rod there is a weight of mass m2. All masses are assumed
to be concentrated into a point.

We denote by θ1 = θ1(t) and θ2 = θ2(t) the deviation of the rods from the upright
position at time t ∈ R as depicted in the image above. By q = q(t) we denote the horizontal
position of the cart and we assume that the cart cannot move vertically. The derivatives
with respect to time are denoted by

d

dt
q(t) = q̇,

d

dt
θ1(t) = θ̇1,

d

dt
θ2(t) = θ̇2.

The goal is to stabilize the pendulum in an upright position above the cart by only
applying forces to the cart itself; think of only the cart having some kind of motor while
the rods can dangle around freely. The control input u = u(t) is thus the force that we can
apply to the cart.

Furthermore, we assume that external distrubances w1, w2, w3 act as forces on q, θ1, θ2;
think of these external forces as wind or some human pushing the rods. The friction in the
joints and the friction of the moving cart are modeled via a linear ansatz. We therefore
introduce the damping coefficients d1, d2, d3 and consider the friction/damping force of the
cart to be −d1q̇ while the friction/damping forces in the joints are assumed to be −d2θ̇1 and
−d3θ̇2.

The positions of the masses m, m1, and m2 are given by

q0 :=

[
q
0

]
, q1 :=

[
q + l1 sin θ1
l1 cos θ1

]
, and q2 :=

[
q + l1 sin θ1 + l2 sin θ2
l1 cos θ1 + l2 cos θ2

]
,
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respecitvely. Thus, the kinetic energy in the system is

K =
1

2

{
m∥q̇0∥2 +m1∥q̇1∥2 +m2∥q̇2∥2

}
=

1

2

{
mq̇2 +m1

[(
q̇ + l1θ̇1 cos θ1

)2

+
(
l1θ̇1 sin θ1

)2
]
+

m2

[(
q̇ + l1θ̇1 cos θ1 + l2θ̇2 cos θ2

)2

+
(
l1θ̇1 sin θ1 + l2θ̇2 sin θ2

)2
]}

and the potential energy can be given as

P = g {m1l1 cos θ1 +m2 (l1 cos θ1 + l2 cos θ2)} .

The principle of Lagrangian mechanics (as taught in “theoretical physics”) states that
to obtain the equations of motion for the cart, we have to define the Lagrangian L := K−P
and then the equations of motion are

u+ w1 − d1q̇ =
d

dt

{
∂L

∂q̇

}
−
{
∂L

∂q

}
=

d

dt

{
mq̇ +m1

(
q̇ + l1θ̇1 cos θ1

)
+m2

(
q̇ + l1θ̇1 cos θ1 + l2θ̇2 cos θ2

)}
− {0}

= (m+m1 +m2) q̈ + l1(m1 +m2)θ̈1 cos θ1 − l1(m1 +m2)(θ̇1)
2 sin θ1

+m2l2θ̈2 cos θ2 −m2l2(θ̇2)
2 sin θ2

= (m+m1 +m2) q̈ + l1(m1 +m2)θ̈1 cos θ1 +m2l2θ̈2 cos θ2

−l1(m1 +m2)(θ̇1)
2 sin θ1 −m2l2(θ̇2)

2 sin θ2

w2 − d2θ̇1 =
d

dt

{
∂L

∂θ̇1

}
−
{
∂L

∂θ1

}
= ⋆. . .=

{
l1(m1 +m2)q̇θ̇1 sin θ1 + l1l2m2θ̇1θ̇2 sin(θ1 − θ2)− g(m1 +m2)l1 sin θ1

}
+

d

dt

{
l1(m1 +m2)q̇ cos θ1 + l21(m1 +m2)θ̇1 + l1l2m2θ̇2 cos(θ1 − θ2)

}
=

{
l1(m1 +m2)q̇θ̇1 sin θ1 + l1l2m2θ̇1θ̇2 sin(θ1 − θ2)− g(m1 +m2)l1 sin θ1

}
+
{
l1(m1 +m2)q̈ cos θ1 + l21(m1 +m2)θ̈1 + l1l2m2θ̈2 cos(θ1 − θ2)

−l1(m1 +m2)q̇θ̇1 sin θ1 − l1l2m2θ̇2(θ̇1 − θ̇2) sin(θ1 − θ2)
}

= l1(m1 +m2)q̈ cos θ1 + l21(m1 +m2)θ̈1 + l1l2m2θ̈2 cos(θ1 − θ2)

+l1l2m2(θ̇2)
2 sin(θ1 − θ2)− g(m1 +m2)l1 sin θ1

w3 − d3θ̇2 =
d

dt

{
∂L

∂θ̇2

}
−
{
∂L

∂θ2

}
= ⋆. . .=

{
−l2m2g sin θ2 + l2m2q̇θ̇2 sin θ2 − l1l2m2θ̇1θ̇2 sin(θ1 − θ2)

}
+

d

dt

{
l22m2θ̇2 + l2m2q̇ cos θ2 + l1l2m2θ̇1 cos(θ1 − θ2)

}
=

{
−l2m2g sin θ2 + l2m2q̇θ̇2 sin θ2 − l1l2m2θ̇1θ̇2 sin(θ1 − θ2)

}
+
{
l22m2θ̈2 + l2m2q̈ cos θ2 + l1l2m2θ̈1 cos(θ1 − θ2)

−l2m2q̇θ̇2 sin θ2 − l1l2m2θ̇1(θ̇1 − θ̇2) sin(θ1 − θ2)
}

= l2m2q̈ cos θ2 + l1l2m2θ̈1 cos(θ1 − θ2) + l22m2θ̈2

−l1l2m2(θ̇1)
2 sin(θ1 − θ2)− l2m2g sin θ2,
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where the MATLAB symbolic computations toolbox was used at the = ⋆. . .= symbols.

In matrix form and using the definition y :=
[
q θ1 θ2

]T
this yields m+m1 +m2 l1(m1 +m2) cos θ1 m2l2 cos θ2

l1(m1 +m2) cos θ1 l21(m1 +m2) l1l2m2 cos(θ1 − θ2)
l2m2 cos θ2 l1l2m2 cos(θ1 − θ2) l22m2


︸ ︷︷ ︸

=:M(y)

 q̈

θ̈1
θ̈2


︸ ︷︷ ︸
=ÿ

=

 l1(m1 +m2)(θ̇1)
2 sin θ1 +m2l2(θ̇2)

2 sin θ2
−l1l2m2(θ̇2)

2 sin(θ1 − θ2) + g(m1 +m2)l1 sin θ1
l1l2m2(θ̇1)

2 sin(θ1 − θ2) + gl2m2 sin θ2

−

 d1q̇

d2θ̇1
d3θ̇2

+

u0
0

+

w1

w2

w3


︸ ︷︷ ︸
=:w︸ ︷︷ ︸

=:f(y,ẏ,u,w)

or
M(y)ÿ = f(y, ẏ, u, w). (1)

Since the determinate of M(y) is

detM(y) = ⋆. . .= l21l
2
2m2

mm1︸ ︷︷ ︸
>0

+m2
1 sin

2 θ1 +m1m2 sin
2 θ1 +mm2 sin

2(θ1 − θ2)︸ ︷︷ ︸
≥0

 > 0,

for all y ∈ R3, we conclude that M(y) is invertible. Thus we can rewrite (1) into the form
ÿ = M−1(y)f(y, ẏ, u, w) which with

x :=

[
y
ẏ

]
and via order reduction gives

ẋ =
d

dt

[
y
ẏ

]
=

[
ẏ

M−1(y)f(y, ẏ, u, w)

]
︸ ︷︷ ︸

=:F (x,u,w)

or in short notation the ODE (control) system

ẋ = F (x, u, w).
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