
Constant controllers for first order systems

To store λF + G ∈ C[λ]p,q1 in a computer one needs (at most) 2 · p · q doubles of memory.
If one computes a regular, stabilizing controller C ∈ C[λ]c,qd of polynomial degree d ∈ N0 (as it
was constructed in the previous section “Stabilization”) one would in general need

((d+ 1) · c · q) doubles,

where we know nothing about d. This could take a lot of memory if d is large.
Here we will show that for controllable first order systems, i.e., systems of the form B(λF +

G) with Z (λF +G) = ∅, one can construct regular, stabilizing controllers which are constant
matrices, i.e., C ∈ Cc,q = C[λ]c,q0 . The construction is based on the Kronecker canonical form.
Therefore, we first construct constant, regular, stabilizing controllers for each of the blocks in
the Kronecker canonical form separately (if possible).

First consider the blocks of type J ,N ,M. Since all blocks of this type have full column
rank the systems B(J ),B(N ),B(M) are already autonomous (Theorem 1.19) and one can
show (Homework, Series 7, Task 8) that for these systems there exist no regular controllers.

Regular controllers can only be constructed for the blocks of type L. Thus consider a block
of this type of size ϵj ∈ N0, i.e.,

Lϵj (λ) := λL1,j − L0,j := λ

1 0
. . .

. . .

1 0

−

0 1
. . .

. . .

0 1

 ∈ C[λ]ϵj ,ϵj+1
1 . (1)

Let p(λ) = λϵjcϵj + . . .+λc1+ c0 ∈ C[λ]ϵj be a polynomial of degree ≤ ϵj and define the matrix
C :=

[
c0 · · · cϵj

]
∈ C1,ϵj+1. Then one can show that

Z

([
Lϵj (λ)

C

])
= Z



λ −1

. . .
. . .

λ −1
c0 · · · cϵj−1 cϵj


 = Z (p(λ)) and

rankC(λ)

([
Lϵj

C

])
= rankC(λ)

(
Lϵj

)
+ rankC(λ) (C) = ϵj + rank (C)

(Homework, Series 8, Task 1).

This implies that C is a regular controller forB(Lϵj ) and (by Theorem 1.19) thatB

([
Lϵj (λ)

C

])
is autonomous if and only if C ̸= 0 which is the case if and only if p ̸= 0.

Thus, to construct a regular, stabilizing controller for B(Lϵj ) one can simply pick a stable
p ̸= 0 (which means Z (p) ⊂ C−) of degree ≤ ϵj , for example

p(λ) = (λ+ 42)ϵj or p(λ) = (λ+ 1.2345) or p(λ) = (λ+ 1)(λ+ 2) · · · (λ+ ϵj), (2)

then determine the coefficients in the canonical basis (i.e., 1, λ, λ2, . . .), and finally write these
coefficients into a matrix C.
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As shown by the first (or last; but not the middle) expression in (2) it is no problem to
choose p such that the highest coefficient is non-zero: cϵj ̸= 0.

Lemma 1. For a block of the form Lϵj as in (1) and given poles λ
(j)
1 , . . . , λ

(j)
ϵj ∈ C− there exists

a constant, regular, stabilizing controller Cj ∈ C1,ϵj+1 such that

Z

([
Lϵj (λ)
Cj

])
=

{
λ
(j)
1 , . . . , λ(j)

ϵj

}
and

rank

([
L1,j

Cj

])
= rank (L1,j) + rank (Cj) = rank (L1,j) + 1 = ϵj + 1.

Proof. Compute the coefficients c0, . . . , cϵj in the canonical basis (i.e., 1, λ, λ2, . . .) of the poly-
nomial

ϵj∑
k=1

(λ− λ
(j)
k ) =:

ϵj∑
k=0

λkck =: pj(λ),

and go through the construction shown above. Then we also see that cϵj = 1 ̸= 0 and thus we
have

rank

([
L1,j

Cj

])
= rank



1 0

. . .
. . .

1 0
c0 · · · cϵj−1 1


 = ϵj + 1,

which proves the claim.

By applying Lemma 1 to all blocks in the Kronecker canonical form we obtain the following
result.

Theorem 2. Let λF +G ∈ C[λ]p,q1 and consider the associated Kronecker canonical form. Let
ϵ ∈ N0 denote the total number of rows in all blocks of type L together, let s ∈ N0 denote the
total number of blocks of type L, and let ρ ∈ N0 denote the total number of rows (and columns)
in all blocks of type J together, as defined in the statement of the Kronecker canonical form.

Assume that B(λF + G) is stabilizable and let the poles λ1, . . . , λϵ ∈ C− be given. Then
there exists a constant, regular, stabilizing controller C ∈ Cs,q such that

Z

([
λF +G

C

])
= {λ1, . . . , λϵ} ∪ Z (λF +G)

rank

([
F
C

])
= rank (F ) + rank (C) = rank (F ) + s (3)

Proof. In this proof we use most of the notation from the statement of the Kronecker canonical
form (cf. the handout “First order systems”). Thus, let S, T be invertible such that

λF +G = S · diag (Lϵ1(λ), . . . ,Lϵs(λ),J (λ),N (λ),M(λ)) · T. (4)

Since we have ϵ = ϵ1 + . . . + ϵs we can group the values λ1, . . . , λϵ into s groups, where the
number of elements in each group is given by ϵ1, . . . , ϵs. More precisely, introducing the notation
ϵ̃j := ϵ1 + . . .+ ϵj−1 for j ≥ 2 and ϵ̃1 := 0 we can define

λ
(1)
1 , . . . , λ(1)

ϵ1 := λϵ̃1+1, . . . , λϵ̃1+ϵ1 ,

λ
(2)
1 , . . . , λ(2)

ϵ2 := λϵ̃2+1, . . . , λϵ̃2+ϵ2 ,

...

λ
(s)
1 , . . . , λ(s)

ϵs := λϵ̃s+1, . . . , λϵ̃s+ϵs .
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Using Lemma 1 one can then construct matrices Cj ∈ C1,ϵj+1 such that

Z

([
Lϵj (λ)
Cj

])
=
{
λ
(j)
1 , . . . , λ(j)

ϵj

}
and rank

([
L1,j

Cj

])
= rank (L1,j) + rank (Cj) . (5)

for j = 1, . . . , s. Setting

C :=


C1 0 0 0

. . .
...

...
...

Cs 0 0 0

 · T

 ∈ Cs,q

with partitioning according to (4) we see that

[
S−1

I

]([
λF +G

C

])
T−1 =



Lϵ1(λ)
. . .

Lϵ1(λ)
J (λ)

N (λ)
M(λ)

C1

. . .

Cs


.

Permuting the block rows we find that there exists a permutation matrix P such that

P

[
S−1

I

]([
λF +G

C

])
T−1 =



[
Lϵ1(λ)
C1

]
. . . [

Lϵs(λ)
Cs

]
J (λ)

N (λ)
M(λ)


. (6)

Thus we have

rankC(λ)

([
λF +G

C

])
=

(
s∑

k=1

rankC(λ)

([
Lϵk(λ)
Ck

]))
+ rankC(λ) (J (λ)) + rankC(λ) (N (λ)) + rankC(λ) (M(λ))

(5)
=

(
s∑

k=1

rankC(λ) (Lϵk(λ)) + rankC(λ) (Ck)

)
+ rankC(λ) (J (λ)) + . . .

=

(
s∑

k=1

rankC(λ) (Lϵk(λ))

)
+ rankC(λ) (J (λ)) + rankC(λ) (N (λ)) + rankC(λ) (M(λ))

+

(
s∑

k=1

rankC(λ) (Ck)

)
= rankC(λ) (λF +G) + rankC(λ) (C) ,
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i.e., the controller is regular. By the same type of argument we find that (3) holds.
Finally, since all the blocks on the diagonal of the right matrix in (6) have full column rank,

so does

[
λF +G

C

]
and the zeros are

Z

([
λF +G

C

])
=

s∪
k=1

Z

([
Lϵk

Ck

])
∪ Z (J ) ∪ Z (N ) ∪ Z (M)

=
s∪

k=1

{
λ
(k)
1 , . . . , λ(k)

ϵk

}
∪ Z (J )

= {λ1, . . . , λϵ} ∪ Z (λF +G) ⊂ C−,

where we used that only the blocks of type J in the Kronecker canonical form contain zeros.
By Lemma 3.3 this proves that C is a stabilizing controller.

Now consider the special case of

λF +G := λ
[
I 0

]
+
[
−A −B

]
∈ C[λ]n,n+m

1 , (7)

where A ∈ Cn,n and B ∈ Cn,m. Then the Kronecker canonical form only contains blocks of type
L and J (since F has full row rank; Homework, Series 5, Task 8). If we further assume that
(A,B) is controllable, then (7) does not have any zeros and thus the Kronecker canonical form
cannot have blocks of type J . Thus there are only blocks of type L and thus in the notation
of Theorem 2 we have ρ = 0, ϵ = n, and ϵ+ s = q = n+m which implies s = m. This means
that the controller from Theorem 2 has size m-by-(n+m).

Corollary 3. Let (A,B) ∈ Cn,n × Cn,m be controllable and let λ1, . . . , λn ∈ C. Then there
exist C1 ∈ Cm,n and C2 ∈ Cm,m such that

Z

([
λI −A −B
C1 C2

])
= {λ1, . . . , λn} ,

where C2 is invertible.

Proof. With the definition from (7) we obtain from Theorem 2 the existence of a regular,
stabilizing controller C ∈ Cm,n+m that satisfies

Z

([
λI −A −B
C1 C2

])
= {λ1, . . . , λn}

rank

([
I 0
C1 C2

])
= n+m.

This means that C2 has to have full column rank and, since C2 ∈ Cm,m is quadratic, C2 is also
invertible.
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