
First order systems

Let P ∈ C[λ]p,q and P = S

[
D 0
0 0

]
T be its Smith form. The problem with the Smith form is that

even for first order polynomial matrices

P (λ) = λF +G ∈ C[λ]p,q1 ,

the computed matrices S,D, T can have (arbitrary) high degree.

Example 1. To compute the Smith form of P ∈ C[λ]3,31 given by

P (λ) := λ

1 1
1

−

7 1
7 1

7

 =

λ− 7 −1
λ− 7 −1

λ− 7

 ,

we perform the elementary unimodular transformationsλ− 7 −1
λ− 7 −1

λ− 7

 ⃝a→

 0 −1
(λ− 7)2 λ− 7 −1

λ− 7

 ⃝b→

 0 −1
(λ− 7)2 0 −1

λ− 7


⃝c→

 0 −1
0 0 −1

(λ− 7)3 λ− 7

 ⃝d→

 0 −1
0 0 −1

(λ− 7)3 0

 ⃝e→

 0 1
0 0 1

(λ− 7)3 0

 ⃝f→

1 1
(λ− 7)3

 .

In abstract notation we apply from the left

S =

−1
−1

1

⃝e ·

1 1
(λ− 7) 1

⃝d ·

 1
(λ− 7) 1

1

⃝b = . . . =

 −1
−(λ− 7) −1
(λ− 7)2 (λ− 7) 1


and from the right

T =

 1
(λ− 7) 1

1

⃝a ·

 1
1

(λ− 7)2 1

⃝c ·

 1
1

1

⃝f = . . . =

 1
1 (λ− 7)

1 (λ− 7)2


to obtain the Smith form

SPT =

1 1
(λ− 7)3

 ∈ C[λ]3,3.

Here we see that the matrices S, T,D contain entries with degree bigger than one.

Due to this property one does not simply compute the Smith form of a first order matrix polynomial
numerically (at least no way is known to the author). A first step towards numerical computations is
given by the Kronecker canonical form. In the Kronecker canonical form we only allow pre- and post-
multiplications with constant invertible matrices S ∈ Cp,p and T ∈ Cq,q. Both S and T can have huge
condition numbers. For the robustness of a numerical algorithm, however, it would be best to only allow
pre- and post-multiplications with unitary matrices.
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Theorem 2 (Kronecker canonical form). Let λF +G ∈ C[λ]p,q1 . Then there exist nonsingular matrices
S ∈ Cp,p and T ∈ Cq,q and ϵ, ρ, σ, η, s, u, v, w ∈ N0 such that

λF +G = S · diag (L,J ,N ,M) · T, (KF )

where L ∈ C[λ]ϵ,ϵ+s
1 , J ∈ C[λ]ρ,ρ1 , N ∈ C[λ]σ,σ1 , and M ∈ C[λ]η+w,η

1 can be further partitioned into

L =: diag (Lϵ1 , . . . ,Lϵs) , J =: diag (Jρ1 , . . . ,Jρu) ,

N =: diag (Nσ1 , . . . ,Nσv ) , M =: diag (Mη1 , . . . ,Mηw) ,

with ϵ = ϵ1 + . . .+ ϵs, ρ = ρ1 + . . .+ ρu, σ = σ1 + . . .+ σv, and η = η1 + . . .+ ηw and the blocks Lϵj , Jρj ,
Nσj , and Mηj have the following form:

1. Every entry Lϵj has the size ϵj × (ϵj + 1), ϵj ∈ N0 and the form

Lϵj (λ) := λ

1 0
. . .

. . .

1 0

−

0 1
. . .

. . .

0 1

 . (1)

2. Every entry Jρj has the size ρj × ρj, ρj ∈ N and the form

Jρj (λ) := λ


1

. . .

. . .

1

−


λj 1

. . .
. . .

. . . 1
λj

 , (2)

where λj ∈ C is a zero of λF +G.

3. Every entry Nσj has the size σj × σj, σj ∈ N and the form

Nσj (λ) := λ


0 1

. . .
. . .

. . . 1
0

+


1

. . .

. . .

1

 . (3)

4. Every entry Mηj
has the size (ηj + 1)× ηj, ηj ∈ N0 and the form

Mηj
(λ) := λ


1

0
. . .

. . . 1
0

+


0

1
. . .

. . . 0
1

 . (4)

Proof. The very complex proof can be found in [Gan59, p. 37].

Definition 3. For P ∈ C[λ]p,qK in the form P (λ) =
∑K

i=0 λ
iPi with Pi ∈ Cp,q we call

λF +G := λ


Iq

. . .

Iq
PK

+


0 −Iq

. . .
. . .

0 −Iq
P0 . . . PK−2 PK−1

 ∈ C[λ]p+q(K−1),qK
1 (5)
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the canonical linearization of P . Furthermore, for q, r ∈ N we denote by

∆q
r(λ) :=


Iq
λIq
...

λrI

 ∈ C[λ](r+1)q,q

and with this for z ∈ Cq
∞ we use the notation

∆rz := ∆q
r

(
d
dt

)
z =


z

z(1)

...
z(r)

 ∈ C(r+1)q
∞ .

In the following Lemma we show that the system given by the canonical linearization B(λF + G)
contains all the relevant information about the original system B(P ).

Lemma 4. Let λF +G ∈ C[λ]p+q(K−1),qK
1 be the canonical linearization of P ∈ C[λ]p,qK . Then we have

the following:

1. rankC(λ) (λF +G) = q(K − 1) + rankC(λ) (P )

2. rank (λ0F +G) = q(K − 1) + rank (P (λ0)) for all λ0 ∈ C

3. Z (λF +G) = Z (P ).

4. B(λF +G) = ∆q
K−1

(
d
dt

)
B(P )

Proof. Let P have the form P (λ) =
∑K

i=0 λ
iPi. Then introduce the notation

P ⟨0⟩(λ) := PK

P ⟨1⟩(λ) := λPK + PK−1

...

P ⟨j⟩(λ) :=

j∑
i=0

λiPK−j+i =

K∑
i=K−j

λi−K+jPi for j = 0, . . . ,K,

such that P ⟨K⟩(λ) = P (λ) and perform the (“block elementary”) unimodular transformations

λF +G =


λI −I

. . .
. . .

λI −I
λI −I

P0 . . . PK−3 PK−2 P ⟨1⟩(λ)


⃝a2→


λI −I

. . .
. . .

λI −I
λI −I

P0 . . . PK−3 P ⟨2⟩(λ) 0



⃝b2→


λI −I

. . .
. . .

λI −I
0 −I

P0 . . . PK−3 P ⟨2⟩(λ) 0


⃝a3→


λI −I

. . .
. . .

λI −I
0 −I

P0 . . . P ⟨3⟩(λ) 0 0



⃝b3→


λI −I

. . .
. . .

0 −I
0 −I

P0 . . . P ⟨3⟩(λ) 0 0

 → . . .
⃝aK→


λI −I

. . .
. . .

0 −I
0 −I

P ⟨K⟩(λ) 0 0 0
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⃝bK→


0 −I

. . .
. . .

0 −I
0 −I

P ⟨K⟩(λ) 0 0 0

 .

In abstract notation we apply from the left

S =


I

. . .

I
I

P ⟨K−1⟩(λ) I


⃝aK

· . . . ·


I

. . .

I
I

P ⟨2⟩(λ) I


⃝a3

·


I

. . .

I
I

P ⟨1⟩(λ) I


⃝a2

=


I

. . .

I
I

P ⟨K−1⟩(λ) · · · P ⟨2⟩(λ) P ⟨1⟩(λ) I


and from the right

T =


I

. . .

I
I
λI I


⃝b2

·


I

. . .

I
λI I

I


⃝b3

· . . . ·


I

λI
. . .

I
I

I


⃝bK

=


I
λI I
...

...
. . .

λK−2I λK−3I · · · I
λK−1I λK−2I · · · λI I


to obtain that

S(λ) (λF +G)T (λ) =


0 −I

. . .
. . .

0 −I
P ⟨K⟩(λ) 0

 =


0 −I

. . .
. . .

0 −I
P (λ) 0

 , (6)

which implies 1. Since S and T are unimodular there exist constants cS , cT ∈ C\{0} such that detS(λ0) =
cS ̸= 0 and detT (λ0) = cT ̸= 0 for all λ0 ∈ C. Thus the matrices S(λ0) and T (λ0) are invertible (over
C) for all λ0 ∈ C. We conclude that for λ0 ∈ C we have by using (6) that

rank (λ0F +G) = rank (S(λ0)(λ0F +G)T (λ0)) = q(K − 1) + rank (P (λ0)) ,

which implies 2. Point 3. then follows by combining 1. and 2. together with Lemma 1.9. Finally, for
point 4. we note that

B(λF +G) = T
(

d
dt

)
B(S(λ)(λF +G)T (λ)) = T

(
d
dt

)
B




0 −I
. . .

. . .

0 −I
P (λ) 0
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=
[
∆q

K−1

(
d
dt

)
⋆ · · · ⋆

]{
(z, w) ∈ Cq

∞ × Cq(K−1)
∞

∣∣∣ [
0 −Iq(K−1)

P
(

d
dt

)
0

] [
z
w

]
= 0

}
=

[
∆q

K−1

(
d
dt

)
⋆ · · · ⋆

] {
(z, w) ∈ Cq

∞ × Cq(K−1)
∞

∣∣∣ P
(

d
dt

)
z = 0 and w = 0

}
= ∆q

K−1

(
d
dt

)
B(P ),

which finishes the proof.

In particular point 4. shows that the first q elements of the system B(λF + G) give the original
behavior B(P ). The other elements are derivatives of the trajectories of B(P ) and can be considered
latent variables. In other words, if λF +G is the canonical linearization of P then

B(P ) =

{
z ∈ Cq

∞

∣∣∣ ∃ℓ ∈ Cq(K−1)
∞ such that with y :=

[
z
ℓ

]
we have F ẏ +Gy = 0

}
,

is a latent variable description of B(P ). This latent variable description has the advantage, that it only
involves a derivative of first order and thus, one can use the Kronecker canonical form.

Lemma 5. Let the Kronecker form of λF +G ∈ C[λ]p,q1 be given by (KF ). Then the (compact) behavior
is given by

B(λF +G) = T−1




∆ϵ1z1

...
∆ϵszs
eJ (0)tx̂
0σ+η


∣∣∣ z1, . . . , zs ∈ C1

∞, x̂ ∈ Cρ


,

Bc(λF +G) = T−1



∆ϵ1z1

...
∆ϵszs
0ρ+σ+η

 ∣∣∣ z1, . . . , zs ∈ C1
c

 ,

Proof. Look at the behavior of each block in the Kronecker canonical form separately. Then assemble
the obtained behaviors. The complete proof is Homework (Series 3, Task 1).

References

[Gan59] F.R. Gantmacher. The Theory of Matrices II. Chelsea Publishing Company, New York, NY,
1959.

5


