First order systems

D 0
0 0

even for first order polynomial matrices

Let P € CIA\J»? and P = S } T be its Smith form. The problem with the Smith form is that

P(A\) =AF 4G € CNPY,
the computed matrices S, D, T can have (arbitrary) high degree.

Example 1. To compute the Smith form of P € C[\]>*® given by

1 7 1 A—T7 -1
P(X):= A 1 - 7 1| = A=T7 =11,
1 7 A—T

we perform the elementary unimodular transformations

A—-7 -1 0 -1 0 -1

A=T7 -1 A=72% =7 -1 @ A=77% 0 -1
i A—T A—T A—=T
[0 -1 0 -1 0 1 1
@ 0 0 -1 @ 0 0 -1 @ 0 0 1 @ 1

_(A -73 A—=T A=T1)3 0 A=T7)3 0 A—-T1)3

In abstract notation we apply from the left
-1 © 1 @ 1 ® -1
S = -1 . 1 lA=7) 1 =...=[—-(A=T7) -1
1 A=7) 1 1 A=-7% (A-7) 1
and from the right
1 @ 1 © 1 ® 1
T = A=7) 1 . 1 -1 =...=|1 A=7)
1 (A—T7)2 1 1 1 (A=17)?
to obtain the Smith form
1
SPT = 1 € C[N*3.

(A=7)°
Here we see that the matrices S, T, D contain entries with degree bigger than one.

Due to this property one does not simply compute the Smith form of a first order matrix polynomial
numerically (at least no way is known to the author). A first step towards numerical computations is
given by the Kronecker canonical form. In the Kronecker canonical form we only allow pre- and post-
multiplications with constant invertible matrices S € CPP and T € C?4. Both S and T can have huge
condition numbers. For the robustness of a numerical algorithm, however, it would be best to only allow
pre- and post-multiplications with unitary matrices.



Theorem 2 (Kronecker canonical form). Let AF + G € C[A\{"?. Then there exist nonsingular matrices
S eCPP and T € C¥7 and €, p,0,n,8,u,v,w € Ny such that

AP+ G =S diag(L, TN, M) T, (KF)
where £ € CINST, T € CIND?, N € CINT?, and M € CINT™™" can be further partitioned into

L =:diag (Le,,...,Le.), J =:diag (Tpys .-, Tpu) s
N =:diag (Noy, ..., Ny, ), M =:diag (M,,,, ..., M,.),

withe =€1+...+€, p=p1+...+py, 0 =01+...+0y, andn=m+...+ny and the blocks L, J,,,
J\/Uj, and My, have the following form.:

1. Every entry L, has the size €; X (¢; 4 1), €; € Ng and the form

1 0 0 1
LoV =M - | - (1)
1 0 0 1
2. Every entry J,, has the size p; x p;, p; € N and the form
1 PR |
ANCYEY SR )
‘. ‘. 1
1 Aj
where \j € C is a zero of \F' +G.
3. FEvery entry N(,j has the size 0 X 0, 05 € N and the form
0 1 1
Ny (A) = A R h . (3)
o
0 1
4. Every entry M, has the size (1n; +1) X n;, n; € Ng and the form
1 0
0 1
My, (A) = A + (4)
1 0
0 1
Proof. The very complex proof can be found in [Gan59, p. 37]. O
Definition 3. For P € C]A\J2? in the form P()\) = ZiK:O A\ P; with P; € CP9 we call
1, 0 -1,
MNP +G=A| + € CApratetak (5)
1, 0 -1
Py Py ... Px_o Pgx



the canonical linearization of P. Furthermore, for ¢,r € N we denote by

1y
M,
AI(N) = | . | eCNTh2e
ATT
and with this for z € CZ, we use the notation
z
2(1)
Azi=A(Lyz=1 | | eclthe.

()

In the following Lemma we show that the system given by the canonical linearization B(AF + G)
contains all the relevant information about the original system B(P).

Lemma 4. Let \F + G € (C[)\]fﬂ(K_l)’qK be the canonical linearization of P € CIA\J?. Then we have
the following:

1. rankeny (AF + G) = q(K — 1) + ranke(y) (P)

2. rank (A\oF + G) = q(K — 1) 4 rank (P()\)) for all Ao € C
3. 3(\F+G) =3(P).

4. BOAF+G) =A% _, (L)B(P)

Proof. Let P have the form P(\) = ZiK:o AiP;. Then introduce the notation

PO = Py

PU(N) = APx+ Px_4

P<J>()\) = Z)\ZPK_]'_H‘ = Z )\Z_K+jPi fOI‘j :0,...,}(7
i=0 i=K—j

such that P (\) = P()\) and perform the (“block elementary”) unimodular transformations

R N T
AF+G = N T Q V4 "y
pVi I N T
Py ... Pg_3 Px_o PN Py ... Px_3 P20 0
PV N T
®)
@ bVi I Q N T
0 —I 0 —I
Py ... Pg_3 PP 0 Py ... PB®() 0 o0
A —T V4 I
@ 0 -1 %@ 0 -7
0 —I 0 -I
Py ... PO 0 0 PIEI()) 0 0 0



0 I
PN 0 0 0
In abstract notation we apply from the left
S = I I I
I 1 I
| PR () I PR()) I PO T
[ 1
= 1
1
_p(K—1>()\) p<2>()\) p<1>()\) I
and from the right
Al
T = I I I
1 AT I
i AT 1 I
[ I
Al 1
NE=2] N3 I
NEID AK=2T AT
to obtain that
0 —1I 0 —1I
SN (AF+G)T(\) = _ ’ 6
oy ) C C (6)
PEI(N) 0 P()) 0

which implies 1. Since S and T are unimodular there exist constants cg, cr € C\{0} such that det S(\g) =
¢s # 0 and det T (Ag) = e¢r # 0 for all Ay € C. Thus the matrices S(Ag) and T'(\g) are invertible (over
C) for all A\g € C. We conclude that for Ay € C we have by using (6) that

rank (Ao F + G) = rank (S(\o)(AoF + G)T'(No)) = q(K — 1) +rank (P(Xg)),

which implies 2. Point 3. then follows by combining 1. and 2. together with Lemma 1.9. Finally, for
point 4. we note that

BAF+G) = T(I)BSNANF+G)TWN)=T(%)B



(
= [A%L (&) * - A

[Ber ()« o A {emectcer [ [l o] 2] <o)
t { P
= A%{—1 (%)%(P)7

(z,w) € CL x CLE-D ‘

which finishes the proof. O

In particular point 4. shows that the first ¢ elements of the system B(AF + G) give the original
behavior B(P). The other elements are derivatives of the trajectories of B(P) and can be considered
latent variables. In other words, if AF' + G is the canonical linearization of P then

B(P) = {z €CL, ‘ 3 € c4E=Y such that with y := {Z

é] we have Fg'/JrGy:O}7

is a latent variable description of B(P). This latent variable description has the advantage, that it only
involves a derivative of first order and thus, one can use the Kronecker canonical form.

Lemma 5. Let the Kronecker form of \F + G € C[]A\]}"? be given by (KF). Then the (compact) behavior
is given by

Ael Z1

|
3

BAF + G) A, - | oazechaeny,
7 Ot 5
L 00+n J
A

BONF+G) = T ‘ S,z €CLY

A, zs
[0p+0+n ]

Proof. Look at the behavior of each block in the Kronecker canonical form separately. Then assemble
the obtained behaviors. The complete proof is Homework (Series 3, Task 1). O
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