## First order systems

Let $P \in \mathbb{C}[\lambda]^{p, q}$ and $P=S\left[\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right] T$ be its Smith form. The problem with the Smith form is that even for first order polynomial matrices

$$
P(\lambda)=\lambda F+G \in \mathbb{C}[\lambda]_{1}^{p, q},
$$

the computed matrices $S, D, T$ can have (arbitrary) high degree.
Example 1. To compute the Smith form of $P \in \mathbb{C}[\lambda]_{1}^{3,3}$ given by

$$
P(\lambda):=\lambda\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right]-\left[\begin{array}{lll}
7 & 1 & \\
& 7 & 1 \\
& & 7
\end{array}\right]=\left[\begin{array}{ccc}
\lambda-7 & -1 & \\
& \lambda-7 & -1 \\
& & \lambda-7
\end{array}\right],
$$

we perform the elementary unimodular transformations

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\lambda-7 & -1 & \\
& \lambda-7 & -1 \\
& & \lambda-7
\end{array}\right] \stackrel{\text { @ }}{\rightarrow}\left[\begin{array}{ccc}
0 & -1 & \\
(\lambda-7)^{2} & \lambda-7 & -1 \\
& & \lambda-7
\end{array}\right] \stackrel{\text { b }}{\longrightarrow}\left[\begin{array}{ccc}
0 & -1 & \\
(\lambda-7)^{2} & 0 & -1 \\
& & \lambda-7
\end{array}\right]}
\end{aligned}
$$

In abstract notation we apply from the left

$$
S=\left[\begin{array}{lll}
-1 & & \\
& -1 & \\
& & 1
\end{array}\right]^{\text {() }} \cdot\left[\begin{array}{ccc}
1 & & \\
& 1 & \\
& (\lambda-7) & 1
\end{array}\right]^{\text {(d) }} \cdot\left[\begin{array}{ccc}
1 & & \\
(\lambda-7) & 1 & \\
& & 1
\end{array}\right]^{\text {b }}=\ldots=\left[\begin{array}{ccc}
-1 & \\
-(\lambda-7) & -1 & \\
(\lambda-7)^{2} & (\lambda-7) & 1
\end{array}\right]
$$

and from the right

$$
T=\left[\begin{array}{ccc}
1 & & \\
(\lambda-7) & 1 & \\
& & 1
\end{array}\right]^{\text {a }} \cdot\left[\begin{array}{ccc}
1 & & \\
& & 1 \\
(\lambda-7)^{2} & & 1
\end{array}\right]^{\text {c) }} \cdot\left[\begin{array}{lll} 
& & 1 \\
1 & & \\
& 1
\end{array}\right]^{\mp}=\ldots=\left[\begin{array}{cc} 
& 1 \\
1 & (\lambda-7) \\
& 1
\end{array}(\lambda-7)^{2}\right]
$$

to obtain the Smith form

$$
S P T=\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & (\lambda-7)^{3}
\end{array}\right] \in \mathbb{C}[\lambda]^{3,3} .
$$

Here we see that the matrices $S, T, D$ contain entries with degree bigger than one.
Due to this property one does not simply compute the Smith form of a first order matrix polynomial numerically (at least no way is known to the author). A first step towards numerical computations is given by the Kronecker canonical form. In the Kronecker canonical form we only allow pre- and postmultiplications with constant invertible matrices $S \in \mathbb{C}^{p, p}$ and $T \in \mathbb{C}^{q, q}$. Both $S$ and $T$ can have huge condition numbers. For the robustness of a numerical algorithm, however, it would be best to only allow pre- and post-multiplications with unitary matrices.

Theorem 2 (Kronecker canonical form). Let $\lambda F+G \in \mathbb{C}[\lambda]_{1}^{p, q}$. Then there exist nonsingular matrices $S \in \mathbb{C}^{p, p}$ and $T \in \mathbb{C}^{q, q}$ and $\epsilon, \rho, \sigma, \eta, s, u, v, w \in \mathbb{N}_{0}$ such that

$$
\begin{equation*}
\lambda F+G=S \cdot \operatorname{diag}(\mathcal{L}, \mathcal{J}, \mathcal{N}, \mathcal{M}) \cdot T \tag{KF}
\end{equation*}
$$

where $\mathcal{L} \in \mathbb{C}[\lambda]_{1}^{\epsilon, \epsilon+s}, \mathcal{J} \in \mathbb{C}[\lambda]_{1}^{\rho, \rho}, \mathcal{N} \in \mathbb{C}[\lambda]_{1}^{\sigma, \sigma}$, and $\mathcal{M} \in \mathbb{C}[\lambda]_{1}^{\eta+w, \eta}$ can be further partitioned into

$$
\begin{array}{rlrl}
\mathcal{L}=: \operatorname{diag}\left(\mathcal{L}_{\epsilon_{1}}, \ldots, \mathcal{L}_{\epsilon_{s}}\right), & \mathcal{J} & =: \operatorname{diag}\left(\mathcal{J}_{\rho_{1}}, \ldots, \mathcal{J}_{\rho_{u}}\right) \\
\mathcal{N}=: \operatorname{diag}\left(\mathcal{N}_{\sigma_{1}}, \ldots, \mathcal{N}_{\sigma_{v}}\right), & \mathcal{M}=: \operatorname{diag}\left(\mathcal{M}_{\eta_{1}}, \ldots, \mathcal{M}_{\eta_{w}}\right)
\end{array}
$$

with $\epsilon=\epsilon_{1}+\ldots+\epsilon_{s}, \rho=\rho_{1}+\ldots+\rho_{u}, \sigma=\sigma_{1}+\ldots+\sigma_{v}$, and $\eta=\eta_{1}+\ldots+\eta_{w}$ and the blocks $\mathcal{L}_{\epsilon_{j}}, \mathcal{J}_{\rho_{j}}$, $\mathcal{N}_{\sigma_{j}}$, and $\mathcal{M}_{\eta_{j}}$ have the following form:

1. Every entry $\mathcal{L}_{\epsilon_{j}}$ has the size $\epsilon_{j} \times\left(\epsilon_{j}+1\right), \epsilon_{j} \in \mathbb{N}_{0}$ and the form

$$
\mathcal{L}_{\epsilon_{j}}(\lambda):=\lambda\left[\begin{array}{cccc}
1 & 0 & &  \tag{1}\\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right]-\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & 0 & 1
\end{array}\right]
$$

2. Every entry $\mathcal{J}_{\rho_{j}}$ has the size $\rho_{j} \times \rho_{j}, \rho_{j} \in \mathbb{N}$ and the form

$$
\mathcal{J}_{\rho_{j}}(\lambda):=\lambda\left[\begin{array}{llll}
1 & & &  \tag{2}\\
& \ddots & & \\
& & \ddots & \\
& & & 1
\end{array}\right]-\left[\begin{array}{cccc}
\lambda_{j} & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{j}
\end{array}\right]
$$

where $\lambda_{j} \in \mathbb{C}$ is a zero of $\lambda F+G$.
3. Every entry $\mathcal{N}_{\sigma_{j}}$ has the size $\sigma_{j} \times \sigma_{j}, \sigma_{j} \in \mathbb{N}$ and the form

$$
\mathcal{N}_{\sigma_{j}}(\lambda):=\lambda\left[\begin{array}{cccc}
0 & 1 & &  \tag{3}\\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right]+\left[\begin{array}{llll}
1 & & & \\
& \ddots & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

4. Every entry $\mathcal{M}_{\eta_{j}}$ has the size $\left(\eta_{j}+1\right) \times \eta_{j}, \eta_{j} \in \mathbb{N}_{0}$ and the form

$$
\mathcal{M}_{\eta_{j}}(\lambda):=\lambda\left[\begin{array}{lll}
1 & &  \tag{4}\\
0 & \ddots & \\
& \ddots & 1 \\
& & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & & \\
1 & \ddots & \\
& \ddots & 0 \\
& & 1
\end{array}\right]
$$

Proof. The very complex proof can be found in [Gan59, p. 37].
Definition 3. For $P \in \mathbb{C}[\lambda]_{K}^{p, q}$ in the form $P(\lambda)=\sum_{i=0}^{K} \lambda^{i} P_{i}$ with $P_{i} \in \mathbb{C}^{p, q}$ we call

$$
\lambda F+G:=\lambda\left[\begin{array}{cccc}
I_{q} & & &  \tag{5}\\
& \ddots & & \\
& & I_{q} & \\
& & & P_{K}
\end{array}\right]+\left[\begin{array}{cccc}
0 & -I_{q} & & \\
& \ddots & \ddots & \\
& & 0 & -I_{q} \\
P_{0} & \ldots & P_{K-2} & P_{K-1}
\end{array}\right] \in \mathbb{C}[\lambda]_{1}^{p+q(K-1), q K}
$$

the canonical linearization of $P$. Furthermore, for $q, r \in \mathbb{N}$ we denote by

$$
\Delta_{r}^{q}(\lambda):=\left[\begin{array}{c}
I_{q} \\
\lambda I_{q} \\
\vdots \\
\lambda^{r} I
\end{array}\right] \in \mathbb{C}[\lambda]^{(r+1) q, q}
$$

and with this for $z \in \mathcal{C}_{\infty}^{q}$ we use the notation

$$
\Delta_{r} z:=\Delta_{r}^{q}\left(\frac{d}{d t}\right) z=\left[\begin{array}{c}
z \\
z^{(1)} \\
\vdots \\
z^{(r)}
\end{array}\right] \in \mathcal{C}_{\infty}^{(r+1) q} .
$$

In the following Lemma we show that the system given by the canonical linearization $\mathfrak{B}(\lambda F+G)$ contains all the relevant information about the original system $\mathfrak{B}(P)$.

Lemma 4. Let $\lambda F+G \in \mathbb{C}[\lambda]_{1}^{p+q(K-1), q K}$ be the canonical linearization of $P \in \mathbb{C}[\lambda]_{K}^{p, q}$. Then we have the following:

1. $\operatorname{rank}_{\mathbb{C}(\lambda)}(\lambda F+G)=q(K-1)+\operatorname{rank}_{\mathbb{C}(\lambda)}(P)$
2. $\operatorname{rank}\left(\lambda_{0} F+G\right)=q(K-1)+\operatorname{rank}\left(P\left(\lambda_{0}\right)\right)$ for all $\lambda_{0} \in \mathbb{C}$
3. $\mathfrak{Z}(\lambda F+G)=\mathfrak{Z}(P)$.
4. $\mathfrak{B}(\lambda F+G)=\Delta_{K-1}^{q}\left(\frac{d}{d t}\right) \mathfrak{B}(P)$

Proof. Let $P$ have the form $P(\lambda)=\sum_{i=0}^{K} \lambda^{i} P_{i}$. Then introduce the notation

$$
\begin{aligned}
P^{\langle 0\rangle}(\lambda) & :=P_{K} \\
P^{\langle 1\rangle}(\lambda) & :=\lambda P_{K}+P_{K-1} \\
& \vdots \\
P^{\langle j\rangle}(\lambda) & :=\sum_{i=0}^{j} \lambda^{i} P_{K-j+i}=\sum_{i=K-j}^{K} \lambda^{i-K+j} P_{i} \quad \text { for } j=0, \ldots, K,
\end{aligned}
$$

such that $P^{\langle K\rangle}(\lambda)=P(\lambda)$ and perform the ("block elementary") unimodular transformations

$$
\begin{aligned}
& \lambda F+G=\left[\begin{array}{ccccc}
\lambda I & -I & & & \\
& \ddots & \ddots & & \\
& & \lambda I & -I & \\
P_{0} & \ldots & P_{K-3} & P_{K-2} & P^{\langle 1\rangle}(\lambda)
\end{array}\right] \stackrel{\Omega}{\longrightarrow}\left[\begin{array}{ccccc}
\lambda I & -I & & \\
& \ddots & \ddots & \\
& & \lambda I & -I & \\
& & & \lambda I & -I \\
P_{0} & \ldots & P_{K-3} & P^{\langle 2\rangle}(\lambda) & 0
\end{array}\right] \\
& \stackrel{\text { (2) }}{\rightarrow}\left[\begin{array}{ccccc}
\lambda I & -I & & & \\
& \ddots & \ddots & & \\
& & \lambda I & -I & \\
P_{0} & \ldots & P_{K-3} & P^{\langle 2\rangle}(\lambda) & 0
\end{array}\right] \stackrel{\text { ®3) }}{ } \quad\left[\begin{array}{ccccc}
\lambda I & -I & & \\
& \ddots & \ddots & \\
& & \lambda I & -I & \\
& & & 0 & -I \\
P_{0} & \ldots & P^{\langle 3\rangle}(\lambda) & 0 & 0
\end{array}\right] \\
& \xrightarrow{\text { (3) }}\left[\begin{array}{ccccc}
\lambda I & -I & & \\
& \ddots & \ddots & \\
& & 0 & -I & \\
P_{0} & \cdots & P^{\langle 3\rangle}(\lambda) & 0 & 0
\end{array}\right] \rightarrow \ldots \stackrel{\text { (®) }}{\rightarrow}\left[\begin{array}{ccccc}
\lambda I & -I & & \\
& \ddots & \ddots & & \\
& & 0 & -I & \\
& & & 0 & -I \\
P^{\langle K\rangle}(\lambda) & & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\stackrel{\text { (2) }}{\rightarrow}\left[\begin{array}{ccccc}
0 & -I & & & \\
& \ddots & \ddots & & \\
& & 0 & -I & \\
P^{\langle K\rangle}(\lambda) & & 0 & 0 & 0
\end{array}\right] \text {. }
$$

In abstract notation we apply from the left

$$
\begin{aligned}
& =\left[\begin{array}{ccccc}
I & & & & \\
& \ddots & & & \\
& & I & & \\
P^{\langle K-1\rangle}(\lambda) & \cdots & P^{\langle 2\rangle}(\lambda) & P^{\langle 1\rangle}(\lambda) & I
\end{array}\right]
\end{aligned}
$$

and from the right

$$
\begin{aligned}
& =\left[\begin{array}{ccccc}
I & & & & \\
\lambda I & I & & & \\
\vdots & \vdots & \ddots & & \\
\lambda^{K-2} I & \lambda^{K-3} I & \cdots & I & \\
\lambda^{K-1} I & \lambda^{K-2} I & \cdots & \lambda I & I
\end{array}\right]
\end{aligned}
$$

to obtain that

$$
S(\lambda)(\lambda F+G) T(\lambda)=\left[\begin{array}{cccc}
0 & -I & &  \tag{6}\\
& \ddots & \ddots & \\
& & 0 & -I \\
P^{\langle K\rangle}(\lambda) & & & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & -I & & \\
& \ddots & \ddots & \\
& & 0 & -I \\
P(\lambda) & & & 0
\end{array}\right]
$$

which implies 1. Since $S$ and $T$ are unimodular there exist constants $c_{S}, c_{T} \in \mathbb{C} \backslash\{0\}$ such that det $S\left(\lambda_{0}\right)=$ $c_{S} \neq 0$ and $\operatorname{det} T\left(\lambda_{0}\right)=c_{T} \neq 0$ for all $\lambda_{0} \in \mathbb{C}$. Thus the matrices $S\left(\lambda_{0}\right)$ and $T\left(\lambda_{0}\right)$ are invertible (over $\mathbb{C})$ for all $\lambda_{0} \in \mathbb{C}$. We conclude that for $\lambda_{0} \in \mathbb{C}$ we have by using (6) that

$$
\operatorname{rank}\left(\lambda_{0} F+G\right)=\operatorname{rank}\left(S\left(\lambda_{0}\right)\left(\lambda_{0} F+G\right) T\left(\lambda_{0}\right)\right)=q(K-1)+\operatorname{rank}\left(P\left(\lambda_{0}\right)\right)
$$

which implies 2. Point 3. then follows by combining 1. and 2. together with Lemma 1.9. Finally, for point 4. we note that
$\mathfrak{B}(\lambda F+G)=T\left(\frac{d}{d t}\right) \mathfrak{B}(S(\lambda)(\lambda F+G) T(\lambda))=T\left(\frac{d}{d t}\right) \mathfrak{B}\left(\left[\begin{array}{cccc}0 & -I & & \\ & \ddots & \ddots & \\ & & 0 & -I \\ P(\lambda) & & & 0\end{array}\right]\right)$

$$
\begin{aligned}
& =\left[\begin{array}{llll}
\Delta_{K-1}^{q}\left(\frac{d}{d t}\right) & \star & \cdots & \star
\end{array}\right]\left\{(z, w) \in \mathcal{C}_{\infty}^{q} \times \mathcal{C}_{\infty}^{q(K-1)} \left\lvert\,\left[\begin{array}{cc}
0 & -I_{q(K-1)} \\
P\left(\frac{d}{d t}\right) & 0
\end{array}\right]\left[\begin{array}{c}
z \\
w
\end{array}\right]=0\right.\right\} \\
& =\left[\begin{array}{llll}
\Delta_{K-1}^{q}\left(\frac{d}{d t}\right) & \star & \cdots & \star
\end{array}\right]\left\{(z, w) \in \mathcal{C}_{\infty}^{q} \times \mathcal{C}_{\infty}^{q(K-1)} \left\lvert\, \quad P\left(\frac{d}{d t}\right) z=0\right. \text { and } w=0\right\} \\
& =\Delta_{K-1}^{q}\left(\frac{d}{d t}\right) \mathfrak{B}(P),
\end{aligned}
$$

which finishes the proof.
In particular point 4. shows that the first $q$ elements of the system $\mathfrak{B}(\lambda F+G)$ give the original behavior $\mathfrak{B}(P)$. The other elements are derivatives of the trajectories of $\mathfrak{B}(P)$ and can be considered latent variables. In other words, if $\lambda F+G$ is the canonical linearization of $P$ then

$$
\mathfrak{B}(P)=\left\{z \in \mathcal{C}_{\infty}^{q} \mid \exists \ell \in \mathcal{C}_{\infty}^{q(K-1)} \text { such that with } y:=\left[\begin{array}{l}
z \\
\ell
\end{array}\right] \text { we have } F \dot{y}+G y=0\right\},
$$

is a latent variable description of $\mathfrak{B}(P)$. This latent variable description has the advantage, that it only involves a derivative of first order and thus, one can use the Kronecker canonical form.

Lemma 5. Let the Kronecker form of $\lambda F+G \in \mathbb{C}[\lambda]_{1}^{p, q}$ be given by (KF). Then the (compact) behavior is given by

$$
\begin{gathered}
\mathfrak{B}(\lambda F+G)=T^{-1}\left\{\left.\left[\begin{array}{c}
\Delta_{\epsilon_{1}} z_{1} \\
\vdots \\
\Delta_{\epsilon_{s}} z_{s} \\
e^{\mathcal{J}(0) t} \hat{x} \\
0_{\sigma+\eta}
\end{array}\right] \quad \right\rvert\, \quad z_{1}, \ldots, z_{s} \in \mathcal{C}_{\infty}^{1}, \hat{x} \in \mathbb{C}^{\rho}\right\}, \\
\mathfrak{B}_{c}(\lambda F+G)=T^{-1}\left\{\left.\left[\begin{array}{c}
\Delta_{\epsilon_{1}} z_{1} \\
\vdots \\
\Delta_{\epsilon_{s}} z_{s} \\
0_{\rho+\sigma+\eta}
\end{array}\right] \quad \right\rvert\, \quad z_{1}, \ldots, z_{s} \in \mathcal{C}_{c}^{1}\right\},
\end{gathered}
$$

Proof. Look at the behavior of each block in the Kronecker canonical form separately. Then assemble the obtained behaviors. The complete proof is Homework (Series 3, Task 1).

## References

[Gan59] F.R. Gantmacher. The Theory of Matrices II. Chelsea Publishing Company, New York, NY, 1959.

