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Definition

A system is an
entity which can

be separated from
its environment.

System

Environment

Systems theory
tries to describe

the interaction of a
system with its
environment

System

Environment

Control theory
tries to influence a
system, so that it

has favorable
properties.

System

Environment

Regulator
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Steam engine

Image from Wikipedia http://en.wikipedia.org/wiki/Steam engine

Drawn by Panther http://commons.wikimedia.org/wiki/User:Panther
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The system

System

θ(t)

τ(t) β(t)

A simplistic model of the stream engine is given by

j θ̈(t) = −µθ̇(t) + kτ(t)− β(t),

where

θ(t) ∈ R – rotation angle j ∈ R>0 – moment of inertia
τ(t) ∈ R – applied torque µ ∈ R≥0 – friction coefficient
β(t) ∈ R – applied load k ∈ R>0 – gain coefficient
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Connections to the environment

System

Valve

θ(t)

τ(t) β(t)

u(t)
w(t)

The torque τ(t) is determined by the steam pressure w(t) ∈ R
and the position of the valve u(t) ∈ [0,1], e.g., we could have

τ(t) = f (w(t),u(t)) := u(t)w(t).

One could say that the variables, by which the system interacts
with its environment are given by

w , β, u, and θ.
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The regulator

System

Valve

Regulator

θ(t)

τ(t) β(t)

u(t)
w(t)

u(t) = g(θ̇(t))

Historically, humans were interested in a constant speed
θ̇(t) ≈ v0 of the engine, subject to (reasonable) fluctuations in
the stream pressure w(t) and load β(t).

Idea: Let the valve position u(t) be determined by the speed of
the engine.
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The flyball governor

Image from Wikipedia http://en.wikipedia.org/wiki/Centrifugal governor

Copyright expired
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Boulton and Watt governor
Also search Google and YouTube for flyball governor.

Image from Wikipedia http://en.wikipedia.org/wiki/Centrifugal governor

Foto by Dr. Mirko Junge http://commons.wikimedia.org/wiki/User:DrJunge
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Steam engine

Image from Wikipedia http://en.wikipedia.org/wiki/Steam engine

Drawn by Panther http://commons.wikimedia.org/wiki/User:Panther
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Questions

1 How can the flyball governor be modeled?
2 How can the flyball governor be tuned, so that the steam

engine indeed runs at a constant speed?
3 How can unwanted oscillations be avoided?
4 Is the model for the steam engine appropriate to describe

reality?

cf. ”On governors”, James Clerk Maxwell, 1868

These questions will (mostly) not be considered/answered in
this course.
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Modern “flyball governors”
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Different approaches

Input-Output systems

• Anthropomorphic
viewpoint

• appropriate for electric
control units

Actuators Sensors

Regulator

Environment

System

Behavioral systems

• simpler
• in some cases more

appropriate (see electric
circuits below)

System

Environment

Regulator
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Closed-loop vs. Open-loop

For input-output systems, one distinguishes two kinds of
control:

• open-loop (german: ”Steuerung”) one fixes a control law
a-priori (only Actuators necessary)

• closed-loop (german: ”Regelung”, also: feedback control)
choose the control, based on simultaneous measurements
(Actuators and Sensors necessary).

Open-loop control can not handle unforseen disturbances (i.e.,
it is not so robust).

Here we only consider closed-loop control.
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A behavioral example

What can be observed from the outside are:
I1, I2 the currents going into the circuit

V1,V2 the potential differences against the ground (i.e. voltages)
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Kirchhoff’s current law ...

... states that a node ni cannot generate charge, i.e., that the
currents that go into one node sum up to zero:

I1 + I2 − I3 − I4 = 0.
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Kirchhoff’s current law in example
Let IL, IR, IC denote the currents through the named
components.

n1 : 0 = I1 − IR + IL
n2 : 0 = IR − IC
n3 : 0 = I2 − IL + IC
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Kirchhoff’s voltage law ...

... states that the voltages in a cycle up to zero:

V
∣∣n2

n1
+ V

∣∣n3

n2
+ V

∣∣n4

n3
+ V

∣∣n1

n4
= 0,

where V
∣∣nj
ni

denotes the voltage from node ni to node nj .

In the graphic above we have (with Vi := V
∣∣ni
ground ):

0 = V
∣∣n2

n1
+ V

∣∣ground
n2

+ V
∣∣n1

ground = V
∣∣n2

n1
− V2 + V1,

⇒ V
∣∣n2

n1
= V2 − V1.
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Kirchhoff’s voltage law in example

By abusing the notation ni := V
∣∣ni
ground we can state

V1 = n1,

V3 = n3.
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The RLC-components

A resistor
with resistance R

is described by

V (t) = RI(t)

An inductor
with inductance L

is described by

Lİ(t) = V (t)

A capacitor
with capacitance C

is described by

I(t) = CV̇ (t)

where V is the voltage across the component and
I is the current through the component.
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The RLC-components in example
As before, let n1,n2,n3 denote the voltages of the nodes
against the ground. The voltages across the components can
then be obtained by Kirchhoff’s voltage law.

We obtain the equations:

L d
dt IL(t) = (n1(t)− n3(t)),
RIR(t) = (n2(t)− n1(t)),

C d
dt (n3(t)− n2(t)) = IC(t).

20/34



The complete equations

Writing all equations together we get


0 0 0 L 0 0
0 0 0 0 0 0
0 −C C 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



˙
n1
n2
n3
IL
IR
IC

 =



1 0 −1 0 0 0
1 −1 0 0 R 0
0 0 0 0 0 1
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 −1 0 1
−1 0 0 0 0 0
0 0 −1 0 0 0




n1
n2
n3
IL
IR
IC

+



0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




I1
I2
V1
V2

 .
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The voltage could be the input!

One can solder one wire to the ground V2 = 0 and connect the
two wires via a voltage source V (t) = V1(t)−V2(t) = V1(t) and
then consider


0 0 0 L 0 0 0 0
0 0 0 0 0 0 0 0
0 −C C 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



˙

n1
n2
n3
IL
IR
IC
I1
I2


=



1 0 −1 0 0 0 0 0
1 −1 0 0 R 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 −1 0 1 0
0 0 0 0 1 −1 0 0
0 0 0 −1 0 1 0 1
−1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0





n1
n2
n3
IL
IR
IC
I1
I2


+



0
0
0
0
0
0
1
0


V (t).

One can show that for every sufficiently smooth V and
consistent initial conditions this system has a unique solution.
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The current could be the input!

One can solder one wire to the ground V2 = 0 and connect the
two wires via a current source I(t) = I1(t) = −I2(t) and then
consider

0 0 0 L 0 0 0
0 0 0 0 0 0 0
0 −C C 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



˙

n1
n2
n3
IL
IR
IC
V1


=



1 0 −1 0 0 0 0
1 −1 0 0 R 0 0
0 0 0 0 0 1 0
0 0 0 1 −1 0 0
0 0 0 0 1 −1 0
0 0 0 −1 0 1 0
−1 0 0 0 0 0 1
0 0 −1 0 0 0 0





n1
n2
n3
IL
IR
IC
V1


+



0
0
0
1
0
−1
0
0


I(t).

One can show that for every sufficiently smooth I and
consistent initial conditions this system has a unique solution.
There is a redudancy among the equations 4-6.
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Conclusion

• The equations for RLC-circuits describe how voltages and
currents interact. In general, neither the voltages nor the
currents are inputs or outputs.

• Every electric RLC-circuit with m wires sticking out, n1
internal nodes, and n2 components is described by a
system of the formE1 E2

0 0
0 0

 ˙[n
Ic

]
=

A1 A2
0 C1

D1 0

[n
Ic

]
+

 0 0
C2 0
0 D2

[ I
V

]
,

where n(t) ∈ Rn1 , Ic(t) ∈ Rn2 , E1,A1 ∈ Rn2,n1 ,
E2,A2 ∈ Rn2,n2 , C1 ∈ Rn1,n2 , C2 ∈ Rn1,m, D1 ∈ Rm,n1 ,
D2 ∈ Rm,m, I(t),V (t) ∈ Rm.
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Tuned mass damper

Images from Wikipedia:
http://en.wikipedia.org/wiki/Tuned mass damper

by authors Someformofhuman, guillom, Greglocock, and another

Also google for “tuned mass damper” and look at the videos!
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The 1D wave equation
The 1D wave equation in the unknown y : R× [0,1]→ R is

∂2

∂t2 y(t ,q) =
∂2

∂y2 y(t ,q) +
[
b1(q) · · · bm(q)

] u1(t)
...

um(t)

+ w(q, t),

0 = y(t ,0) = y(t ,1),
0 = y(0,q) = ẏ(0,q),

where q ∈ [0,1], t ∈ [0,∞) and
• y(t ,q) describes the state of the wave at time t and

position q ∈ [0,1],
• b1, . . . ,bm : [0,1]→ R are arbitrary fixed functions which

are defined by the problem,
• u1, . . . ,um : R× R are the controls (by which we can

influence the system), and
• w : R× [0,1]→ R is an external perturbation.
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Spacial discretization
To approximate y on an equidistant grid with n ∈ N intervals

xi(t) := y
(

t , i
n

)
, for i = 0, . . . ,n,

using the boundary conditions, and the finite difference
equation

ẍi (t) =
∂2

∂t2
y
(

t, i
n

)
=

∂2

∂y2
y
(

t, i
n

)
+
[
b1

(
i
n

)
· · · bm

(
i
n

)] 
u1(t)

.

.

.
um(t)

 + w
(

i
n , t
)

≈
xi+1(t) − 2xi (t) + xi−1(t)

1
n2

+
[
b1

(
i
n

)
· · · bm

(
i
n

)] 
u1(t)

.

.

.
um(t)

 + w
(

i
n , t
)
, for i = 1, . . . n − 1

leads to the approximate system

d2

dt2



x1 (t)
x2 (t)

.

.

.
xn−2 (t)
xn−1 (t)

 = n2



−2 1
1 −2 1

. . .
. . .

. . .
1 −2 1

1 −2


︸ ︷︷ ︸

=:A∈Rn−1,n−1



x1 (t)
x2 (t)

.

.

.
xn−2 (t)
xn−1 (t)


︸ ︷︷ ︸
=:x∈Rn−1

+



b1

(
1
n

)
· · · bm

(
1
n

)
b1

(
2
n

)
· · · bm

(
2
n

)
.
.
.

.

.

.
b1

(
n−2

n

)
· · · bm

(
n−2

n

)
b1

(
n−1

n

)
· · · bm

(
n−1

n

)


︸ ︷︷ ︸

=:B∈Rn−1,m

u (t)+



w
(

t, 1
n

)
w
(

t, 2
n

)
.
.
.

w
(

t, n−2
n

)
w
(

t, n−1
n

)


︸ ︷︷ ︸
=:v(t)∈Rn−1

.
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The resulting system

Let denote

Cq
∞ :=

{
x : R→ Rq∣∣x is infinitely often differentiable

}
,

and (for ease of notation) replace n − 1 by n.

Then the 1D-Wave equation on [0,1] is approximated by the
linear system

ẍ(t) = Ax(t) + Bu(t) + v(t).

with state x : Cn
∞, A ∈ Rn,n, B ∈ Rn,m, input u ∈ Cm, and

external perturbation v ∈ Cn
∞.
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The wave equation in pictures
Let A ∈ Rn,n, B ∈ Rn,m, C ∈ R`,n, F ∈ Rm,n, L ∈ Rn,`.

LF

B C
System

Observer

v
u

Regulator

z̈ = Az

x !→ 0

ẍ = Ax

We call x ∈ Cn
∞ the state, u ∈ Cm

∞ the input, y = Cx the output,
v ∈ Cn

∞ the external perturbation.
→ RUNME.m
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Automatic control of guided missiles
“Modern Homing Missile Guidance Theory and Techniques” by
Neil F. Palumbo, Ross A. Blauwkamp, and Justin M. Lloyd,
Johns Hopkins APL Technical Digest, Volume 29, Number 1
(2010)

From the abstract:
“Classically derived homing guidance laws, such as proportional
navigation, can be highly effective when the homing missile has
significantly more maneuver capability than the threat. As threats
become more capable, however, higher performance is required from
the missile guidance law to achieve intercept. To address this
challenge, most modern guidance laws are derived using
linear-quadratic optimal control theory to obtain analytic feedback
solutions.”

See also: http://techdigest.jhuapl.edu/TD/td2901/index.htm
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Stochastic control and delay

Stochastic version of what we will seem to play role in many
practical applications, e.g., engineering problems, biological
systems, traffic networks, communication networks, finance, ...

In practice it takes time to send the data from the sensors to
regulator and back to the actuators. One can try to develop
theory to handle this delay.

In this course stochastic control and delays will not be covered.
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Further applications

Control engineering plays an important role in
1 automotive engineering
2 aerospace engineering
3 electrical engineering
4 chemical engineering
5 mechanical engineering
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Rules

1 Everyone, who attended more than 30 % of the lectures
can take the exam in the end.

2 Relevant for the exam is everything, unless explicitly states
otherwise.

3 Do the homeworks.
4 On Monday you are required to print all the material you

need for the whole week (if any).
5 Mathematical issues can be discussed at any time, at “any”

sound level. Non-mathematical discussions are not
allowed.
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Remark

1 I want to teach you all I know about systems and control
theory! This requires you (and me) to work hard.

2 If it does not feel right, do not work to long an exercise.
May there is a mistake in it or you misunderstood
something simple.

3 If you are not learning, do something against it, e.g., quit.
4 The script is not in a finished state. It is subject to change,

and the quality of the files that will be uploaded on the
website might be a bit messy.

5 This lecture/talk was not representative for the rest of the
semester. We will work a lot on the blackboard.

6 Your remarks are welcome.
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