Control Theory

3. Exercise
(Discussion on May 26, 2014)

Exercise 3.1: (Kalman decomposition)

Let $A \in \mathbb{R}^{n, n}, B \in \mathbb{R}^{n, m}, C \in \mathbb{R}^{p, n}$. Show that there exists an orthogonal matrix $V \in \mathbb{R}^{n, n}$ such that

$$
\begin{aligned}
V^{T} A V & =\left[\begin{array}{cccc}
A_{c \bar{o}} & A_{12} & A_{13} & A_{14} \\
0 & A_{c o} & A_{23} & A_{24} \\
0 & 0 & A_{\overline{c o}} & A_{34} \\
0 & 0 & 0 & A_{\overline{c o}}
\end{array}\right], \quad V^{T} B=\left[\begin{array}{c}
B_{1} \\
B_{2} \\
0 \\
0
\end{array}\right], \\
C V & =\left[\begin{array}{llll}
0 & C_{2} & 0 & C_{4}
\end{array}\right],
\end{aligned}
$$

whereby $\left(A_{c o}, B_{2}, C_{2}\right)$ is controllable and observable.

Exercise 3.2: (Stabilization)

Consider the control problem

$$
\begin{aligned}
\dot{\varphi}(t) & =\omega(t) \\
j \dot{\omega}(t) & =-r \omega(t)+k u(t)
\end{aligned}
$$

with $k, j, r>0$. Compute all stabilizing feedback matrices $F \in \mathbb{R}^{1,2}$ for the system.

Exercise 3.3: (Equivalence of LTI-systems)

Consider two equivalent LTI-systems given by
$\dot{x}=A x+B u$
$y=C x+D u$

$$
\begin{align*}
& \dot{\tilde{x}}=\tilde{A} \tilde{x}+\tilde{B} \tilde{u} \tag{2}\\
& \tilde{y}=\tilde{C} \tilde{x}+\tilde{D} \tilde{u} \tag{1}
\end{align*}
$$

i.e., it holds that

$$
\left[\begin{array}{ll}
\tilde{A} & \tilde{B} \\
\tilde{C} & \tilde{D}
\end{array}\right]=\left[\begin{array}{cc}
P & 0 \\
0 & R
\end{array}\right]\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
P^{-1} & 0 \\
F & Q
\end{array}\right],
$$

with $P \in \mathbb{R}^{n \times n}, R \in \mathbb{R}^{p \times p}, Q \in \mathbb{R}^{m \times m}$ nonsingular, and $F \in \mathbb{R}^{m \times n}$.
Show: If (1) is controllable (stabilizable), then (2) is also controllable (stabilizable).

