# Control Theory 

## 4. Exercise

(Discussion on June 10, 2014)

## Exercise 4.1: (Kronecker product)

(a) Let $W, X, Y, Z$ be matrices of appropriate dimensions such that the products $W X$ and $Y Z$ are defined. Show that $(W \otimes Y)(X \otimes Z)=(W X) \otimes(Y Z)$.
(b) Let $S, G$ be invertible matrices. Show that also $S \otimes G$ is invertible and that $(S \otimes G)^{-1}=$ $S^{-1} \otimes G^{-1}$.
(c) Let $A \in R^{n, n}$ and $B \in \mathbb{R}^{m, m}$. Further, let $A$ have the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and $B$ have the eigenvalues $\mu_{1}, \ldots, \mu_{m}$. Show that

$$
\sigma(A \otimes B)=\left\{\lambda_{i} \mu_{j} \mid i=1, \ldots, n, j=1, \ldots, m\right\} .
$$

## Exercise 4.2: (Sylvester equation)

Let $A \in \mathbb{R}^{n, n}, B \in \mathbb{R}^{m, m}$ and $W \in \mathbb{R}^{n, m}$. Show that the Sylvester equation $A X+X B=W$ has a solution $X$ if and only if the matrices

$$
M_{1}=\left[\begin{array}{cc}
A & W \\
0 & -B
\end{array}\right], \quad M_{2}=\left[\begin{array}{cc}
A & 0 \\
0 & -B
\end{array}\right]
$$

are similar.

## Exercise 4.3: (Partial Stabilization using the sign function method)

Let $(A, B) \in \mathbb{R}^{n, n} \times \mathbb{R}^{n, m}$ and assume that $\sigma(A)=\Lambda_{-} \cup \Lambda_{+}:=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\} \cup\left\{\lambda_{k+1}, \ldots, \lambda_{n}\right\}$ with $\operatorname{Re}\left(\lambda_{j}\right)<0$ for $j=1, \ldots, k$ and $\operatorname{Re}\left(\lambda_{j}\right)>0$ for $j=k+1, \ldots, n$. Let

$$
A=S\left[\begin{array}{cc}
J_{-} & 0 \\
0 & J_{+}
\end{array}\right] S^{-1}, \quad \sigma\left(J_{-}\right)=\Lambda_{-}, \sigma\left(J_{+}\right)=\Lambda_{+},
$$

be the Jordan canonical form of $A$. Then

$$
\operatorname{sign}(A):=S\left[\begin{array}{cc}
-I_{k} & 0 \\
0 & I_{n-k}
\end{array}\right] S^{-1}
$$

(a) Show that $P:=\frac{1}{2}(I-\operatorname{sign}(A))$ is a projector onto $\mathcal{S}_{-}$(the $A$-invariant subspace corresponding to $\left.\Lambda_{-}\right)$.
(b) Let $G \in \mathbb{R}^{n, n}, H \in \mathbb{R}^{m, m}, W \in \mathbb{R}^{n, m}$ with $\sigma(G), \sigma(H) \subset \mathbb{C}^{+}$and consider the Sylvester equation

$$
\begin{equation*}
G X+X H=W \tag{1}
\end{equation*}
$$

Show that

$$
\operatorname{sign}\left(\left[\begin{array}{cc}
G & W \\
0 & -H
\end{array}\right]\right)=\left[\begin{array}{cc}
I_{n} & 2 X \\
0 & -I_{m}
\end{array}\right],
$$

whereby $X$ is the solution of the Sylvester equation (1).

