Technische Universität Berlin Institut für Mathematik Lena Scholz

Control Theory

6. Exercise (Discussion on July 7, 2014)

Exercise 6.1: (Hamiltonian matrices)

Let $\mathcal{H} \in \mathbb{R}^{2n,2n}$ and $J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$. Show that the following statements are equivalent:

- (i) The matrix \mathcal{H} is Hamiltonian, i.e., $\mathcal{H}^T J + J \mathcal{H} = 0$.
- (ii) The matrix $J\mathcal{H}$ is symmetric.
- (iii) There exist $F, G, H \in \mathbb{R}^{n,n}$ with $G = G^T$ and $H = H^T$, such that $\mathcal{H} = \begin{bmatrix} F & G \\ H & -F^T \end{bmatrix}$.
- (iv) The matrix ${\mathcal H}$ is skew-adjoint with respect to the inner product

$$\langle x, y \rangle_J := y^T J x, \quad x, y \in \mathbb{R}^{2n},$$

i.e., for all $x, y \in \mathbb{R}^{2n}$ it holds that $\langle \mathcal{H}x, y \rangle_J = -\langle x, \mathcal{H}y \rangle_J$.

Exercise 6.2: (Isotropic invariant subspaces)

Let $\mathcal{H} \in \mathbb{R}^{2n,2n}$ be Hamiltonian and let

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \in \mathbb{R}^{2n,r}$$

with $X_1, X_2 \in \mathbb{R}^{n,r}$, such that the columns of X span an \mathcal{H} -invariant subspace \mathcal{U} , i.e.,

$$\mathcal{H}X = XZ$$

for a matrix $Z \in \mathbb{R}^{r,r}$.

Show: If the eigenvalues corresponding to \mathcal{U} are all in the left open half plane, i.e., $\sigma(Z) \subset \mathbb{C}^-$, then \mathcal{U} is *isotropic*, i.e., for all $x, y \in \mathcal{U}$ it holds that $\langle x, y \rangle_J = 0$. Hint: Lyapunov theory.

Exercise 6.3: (Hamiltonian and symplectic matrices)

Let \mathbb{H}_{2n} be the set of Hamiltonian matrices and let \mathbb{S}_{2n} be the set of symplectic matrices. A matrix $\mathcal{S} \in \mathbb{R}^{2n,2n}$ is called symplectic, if \mathcal{S} is orthogonal with respect to the inner product $\langle \cdot, \cdot \rangle_J$, i.e., for all $x, y \in \mathbb{R}^{2n}$ it holds that $\langle \mathcal{S}x, \mathcal{S}y \rangle_J = \langle x, y \rangle_J$. Show:

- (i) The matrix S is symplectic if and only if $S^T J S = J$.
- (ii) It holds $|\det(\mathcal{S})| = 1$.
- (iii) The set of symplectic matrices S_{2n} together with the matrix multiplication forms a group.

(iv) \mathbb{H}_{2n} is the Lie-Algebra corresponding to the Lie group \mathbb{S}_{2n} , i.e., every $\mathcal{H} \in \mathbb{H}_{2n}$ solves

$$\frac{d}{dt} \left(\langle (I + t\mathcal{H})x, (I + t\mathcal{H})y \rangle_J = \langle x, y \rangle_J \right) \Big|_{t=0} \quad \text{for all } x, y \in \mathbb{R}^{2n}$$

and \mathbb{H}_{2n} is a (non-associative) algebra with respect to the product

$$[\mathcal{H}_1, \mathcal{H}_2] := \mathcal{H}_1 \mathcal{H}_2 - \mathcal{H}_2 \mathcal{H}_1, \quad \mathcal{H}_1, \mathcal{H}_2 \in \mathbb{H}_{2n}$$

that satisfies the following properties:

- a) $[\mathcal{H}_1, \mathcal{H}_2] \in \mathbb{H}_{2n}$ for all $\mathcal{H}_1, \mathcal{H}_2 \in \mathbb{H}_{2n}$.
- b) $[\mathcal{H}, \mathcal{H}] = 0$ for all $\mathcal{H} \in \mathbb{H}_{2n}$.
- c) $[\mathcal{H}_1 + \mathcal{H}_2, \mathcal{H}_3] = [\mathcal{H}_1, \mathcal{H}_3] + [\mathcal{H}_2, \mathcal{H}_3]$ for all $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3 \in \mathbb{H}_{2n}$.
- d) $[[\mathcal{H}_1, \mathcal{H}_2], \mathcal{H}_3] + [[\mathcal{H}_2, \mathcal{H}_3], \mathcal{H}_1] + [[\mathcal{H}_3, \mathcal{H}_1], \mathcal{H}_2] = 0$ for all $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3 \in \mathbb{H}_{2n}$. (Jacobi identity)
- (v) It holds that $\mathcal{S}^{-1}\mathcal{HS} \in \mathbb{H}_{2n}$ for all $\mathcal{S} \in \mathbb{S}_{2n}$, $\mathcal{H} \in \mathbb{H}_{2n}$.