Control Theory

6. Exercise

(Discussion on July 7, 2014)

Exercise 6.1: (Hamiltonian matrices)

Let $\mathcal{H} \in \mathbb{R}^{2 n, 2 n}$ and $J=\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right]$. Show that the following statements are equivalent:
(i) The matrix \mathcal{H} is Hamiltonian, i.e., $\mathcal{H}^{T} J+J \mathcal{H}=0$.
(ii) The matrix $J \mathcal{H}$ is symmetric.
(iii) There exist $F, G, H \in \mathbb{R}^{n, n}$ with $G=G^{T}$ and $H=H^{T}$, such that $\mathcal{H}=\left[\begin{array}{cc}F & G \\ H & -F^{T}\end{array}\right]$.
(iv) The matrix \mathcal{H} is skew-adjoint with respect to the inner product

$$
\langle x, y\rangle_{J}:=y^{T} J x, \quad x, y \in \mathbb{R}^{2 n},
$$

i.e., for all $x, y \in \mathbb{R}^{2 n}$ it holds that $\langle\mathcal{H} x, y\rangle_{J}=-\langle x, \mathcal{H} y\rangle_{J}$.

Exercise 6.2: (Isotropic invariant subspaces)

Let $\mathcal{H} \in \mathbb{R}^{2 n, 2 n}$ be Hamiltonian and let

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \in \mathbb{R}^{2 n, r}
$$

with $X_{1}, X_{2} \in \mathbb{R}^{n, r}$, such that the columns of X span an \mathcal{H}-invariant subspace \mathcal{U}, i.e.,

$$
\mathcal{H} X=X Z
$$

for a matrix $Z \in \mathbb{R}^{r, r}$.
Show: If the eigenvalues corresponding to \mathcal{U} are all in the left open half plane, i.e., $\sigma(Z) \subset \mathbb{C}^{-}$, then \mathcal{U} is isotropic, i.e., for all $x, y \in \mathcal{U}$ it holds that $\langle x, y\rangle_{J}=0$.
Hint: Lyapunov theory.

Exercise 6.3: (Hamiltonian and symplectic matrices)

Let $\mathbb{H}_{2 n}$ be the set of Hamiltonian matrices and let $\mathbb{S}_{2 n}$ be the set of symplectic matrices. A matrix $\mathcal{S} \in \mathbb{R}^{2 n, 2 n}$ is called symplectic, if \mathcal{S} is orthogonal with respect to the inner product $\langle\cdot, \cdot\rangle_{J}$, i.e., for all $x, y \in \mathbb{R}^{2 n}$ it holds that $\langle\mathcal{S} x, \mathcal{S} y\rangle_{J}=\langle x, y\rangle_{J}$. Show:
(i) The matrix \mathcal{S} is symplectic if and only if $\mathcal{S}^{T} J \mathcal{S}=J$.
(ii) It holds $|\operatorname{det}(\mathcal{S})|=1$.
(iii) The set of symplectic matrices $\mathbb{S}_{2 n}$ together with the matrix multiplication forms a group.
(iv) $\mathbb{H}_{2 n}$ is the Lie-Algebra corresponding to the Lie group $\mathbb{S}_{2 n}$, i.e., every $\mathcal{H} \in \mathbb{H}_{2 n}$ solves

$$
\left.\frac{d}{d t}\left(\langle(I+t \mathcal{H}) x,(I+t \mathcal{H}) y\rangle_{J}=\langle x, y\rangle_{J}\right)\right|_{t=0} \quad \text { for all } x, y \in \mathbb{R}^{2 n}
$$

and $\mathbb{H}_{2 n}$ is a (non-associative) algebra with respect to the product

$$
\left[\mathcal{H}_{1}, \mathcal{H}_{2}\right]:=\mathcal{H}_{1} \mathcal{H}_{2}-\mathcal{H}_{2} \mathcal{H}_{1}, \quad \mathcal{H}_{1}, \mathcal{H}_{2} \in \mathbb{H}_{2 n}
$$

that satisfies the following properties:
a) $\left[\mathcal{H}_{1}, \mathcal{H}_{2}\right] \in \mathbb{H}_{2 n}$ for all $\mathcal{H}_{1}, \mathcal{H}_{2} \in \mathbb{H}_{2 n}$.
b) $[\mathcal{H}, \mathcal{H}]=0$ for all $\mathcal{H} \in \mathbb{H}_{2 n}$.
c) $\left[\mathcal{H}_{1}+\mathcal{H}_{2}, \mathcal{H}_{3}\right]=\left[\mathcal{H}_{1}, \mathcal{H}_{3}\right]+\left[\mathcal{H}_{2}, \mathcal{H}_{3}\right]$ for all $\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{H}_{3} \in \mathbb{H}_{2 n}$.
d) $\left[\left[\mathcal{H}_{1}, \mathcal{H}_{2}\right], \mathcal{H}_{3}\right]+\left[\left[\mathcal{H}_{2}, \mathcal{H}_{3}\right], \mathcal{H}_{1}\right]+\left[\left[\mathcal{H}_{3}, \mathcal{H}_{1}\right], \mathcal{H}_{2}\right]=0$ for all $\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{H}_{3} \in \mathbb{H}_{2 n}$. (Jacobi identity)
(v) It holds that $\mathcal{S}^{-1} \mathcal{H} \mathcal{S} \in \mathbb{H}_{2 n}$ for all $\mathcal{S} \in \mathbb{S}_{2 n}, \mathcal{H} \in \mathbb{H}_{2 n}$.

