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Lecture on sparse direct
solvers

I Sparse matrices

I Ratherford-Boeing format - indirect addressing
I Basic operations on sparse structures:

I permutation
I scalar product between sparse vectors
I linear combination of sparse vectors

I Fill-in problem in LU decomposition

I Block Triangular Form (BTF), Reverse Cuthill-MacKee
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Sparse matrices

What is a SPARSE MATRIX A ∈ IRn×n?

I The number of non zero entries in A (nz(A)) must be O(n)
i.e. If we define δ ∈ (0, 1) the density of non zeros entries
nz(A) = δn2, we assume that

1

n
< δ = O(

1

n
)

I The previous statement implies that A depends on a “small”
number of parameters, but the reverse is not true
(Vandermonde, circulant matrices, etc....)
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Sparse matrices: examples

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 24618

STOKES PROBLEM (N=2211)

Stokes problem approximation by mixed finite element method

(n = 2211)
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Sparse matrices: examples

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 288

LAPLACE OPERATOR (N=64)

Laplace operator approximation by the finite difference method (n = 64)
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Sparse matrices: examples

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 1432

Sparse Matrix (N=800)

General non symmetric sparse matrix (n = 800)
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Sparse matrices: a more complex example

Structural mechanics problem

7 / 84



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Sparse matrices: a more complex example

Structural mechanics problem

8 / 84



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Sparse matrices: a more complex example

Mesh
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Sparse matrices: a more complex example

A with n = 42339 nz(A) = 3095034 and δ = 0.0017
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Sparse matrices: Ambiguous definition

I What is a good δ?

I If A is a vector: δ = 0.1? δ = 0.001?

I The choice will depend on n
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Sparse vectors: storage

A sparse vector may be held in a full-lenght vector storage: rapid
access but arather wasteful of storage.

I If v is a n-vector: (vi , i) is enough. We have a real vector VAL
and an integer vector IND, each of lenght at least the number
of entries (NZV ≤ N. VAL(J)= vi and IND(J) = i J =

1,NZV.

I gather is the operation of transforming a full vector to packed
form

I scatter is the reverse operation
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Sparse vectors: inner product of two packed vectors

Let (VALX,INDX) and (VALY,INDY) two packed vectors of length
NZX and NZY

do K = 1,N

W(K) = 0

end do

PROD = 0

do KX = 1,NZX

W(INDX(KX)) = VALX(KX)

end do

do KY = 1,NZY

PROD = PROD + W(INDY(KY))*VAL(KY)

end do
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Sparse vectors: x = x + αy

Let (VALX,INDX) and (VALY,INDY) two packed vectors of lenght
NZX and NZY

do K = 1,NZY

W(INDX(K)) = VALY(K)

end do

do KX = 1,NZX

I = INDX(KX)

if (W(I) .NE. ZERO) then

VALX(KX) = VALX(KX) + ALPHA*W(I)

W(I) = ZERO

end if

end do

do KY = 1,NZY

I = INDX(KY)

if (W(I) .NE. ZERO) then

NZX = NZX + 1

VALX(NZX) = ALPHA*W(I)

INDX(NZX) = I

W(I) = ZERO

end if

end do
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Sparse vectors: x = x +
∑

j αjy(j)

1. Load x in w

2. For each y(j) : Scan y(j). For each y
(j)
i , check wi . If is

nonzero, set wi = wi + αjy
(j)
i and add i to the data structure

for x

3. Scan the revised data structure for x. For each i , set
xi = wi , wi = 0

15 / 84



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Sparse vectors: permutations

A permutation matrix P can be represented by a set of integers

ipos(i) i = 1, . . . , n

which represent the position of the components of x in y = Px

example: ipos = [2, 4, 3, 1, 6, 5, 8, 7]

The permuted vector can be computed as follow
do I = 1,N

Y(IPOS(I)) = X(I)

end do

example: x = [x1, 0, 0, x4, 0, 0, x7, 0], y = [0, x4, 0, x1, 0, 0, 0, x7]

The inverse permutation invipos can be easily computed
do I = 1,N

INVIPOS(IPOS(I)) = I

end do

example: invipos = [4, 1, 3, 2, 6, 5, 8, 7]
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Sparse vectors: permutations

The sparse vector x can be permuted in place by

do I = 1,NZX

INDX(I) = INVIPOS(INDX(I))

end do

example: x = [x1, 0, 0, x4, 0, 0, x7, 0], y = [0, x4, 0, x1, 0, 0, 0, x7]
invipos = [4, 1, 3, 2, 6, 5, 8, 7]
indx = [1, 4, 7] → indx = [4, 2, 8]
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Sparse matrices: storage

A =


1 0 0 −1 0
2 0 −2 0 3
0 −3 0 0 0
0 4 0 −4 0
5 0 −5 0 6


Coordinate scheme

Subscripts 1 2 3 4 5 6 7 8 9 10 11

IRN 1 2 2 1 5 3 4 5 2 4 5
JCN 4 5 1 1 5 2 4 3 3 2 1
VAL -1 3 2 1 6 -3 -4 -5 -2 4 5
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Sparse matrices: storage

A =


1 0 0 −1 0
2 0 −2 0 3
0 −3 0 0 0
0 4 0 −4 0
5 0 −5 0 6


Collection of sparse row vectors

Subscripts 1 2 3 4 5 6 7 8 9 10 11

LENROW 2 3 1 2 3
IROWST 1 3 6 7 9

JCN 4 1 5 1 3 2 4 2 3 1 5
VAL -1 1 3 2 -2 -3 -4 4 -5 5 6
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Sparse matrices: fill-in and reordering

A =



x x x x x x x x
x x
x x
x x
x x
x x
x x
x x



20 / 84



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Sparse matrices: fill-in and reordering

L =



x
x x
x x x
x x x x
x x x x x
x x x x x x
x x x x x x x
x x x x x x x x


U =



x x x x x x x x
x x x x x x x

x x x x x x
x x x x x

x x x x
x x x

x x
x
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Sparse matrices: fill-in and reordering

PTAP =



x x
x x

x x
x x

x x
x x

x x
x x x x x x x x



22 / 84



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Sparse matrices: fill-in and reordering

L =



x
x

x
x

x
x

x
x x x x x x x x


U =



x x
x x

x x
x x

x x
x x

x x
x
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Sparse matrices: Block Triangular Form (BTF)

We seek permutations P and Q such that A is in block triangula
form.

PAQ =


B11

B21 B22
...

...
...

Bk1 . . . Bk,k−1 Bkk


If the matrix A can be permute in BTF, we call it reducible,
otherwise A is irriducible. We assume that all blocks Bii are
irriducibles.
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Block Triangular Form (BTF): example

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 1432

Sparse Matrix (N=800)

General non symmetric sparse matrix (n = 800)
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Block Triangular Form (BTF): example

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 1183

L−factor (n=800)

L factor (n = 800)
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Block Triangular Form (BTF): example

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 1193

U factor (n=800)

U factor (n = 800)
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Block Triangular Form (BTF): example

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 1432

Reordered by Dulmage−Mendelsohn (n=800)

After application of Dulmage-Mendelsohn algorithm in Matlab (n = 800)

In Matlab it is better to compute the upper triangular version
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Block Triangular Form (BTF)

The algorithm (see Duff, Erisman, and Reid Ch-6) is based of two
separate phases

I Maximum Transversal by computing P: the diagonal of PA is
full.

I Symmetric permutation of PA to Lower BTF: QT (PA)Q
Tarjan (1972), Duff and Reid (1978) , HSL MC23 FORTRAN
implementation (75 instructions)
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Block Tridiagonal Form and graphs

A symmetrically structured matrix has bandwidth 2m − 1 and
semibandwidth m if m is the smallest integer such that aij = 0

whenever |i − j | > m. The fill-in is confined in the band.

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 288

LAPLACE OPERATOR (N=64)

Laplace operator approximation by the finite difference method (n = 64,

m = 8)
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Block Tridiagonal Form and graphs

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 519

Factor L in a band matrix

Laplace operator approximation by the finite difference method (n = 64,

m = 8) L factor
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Block Tridiagonal Form and graphs

We can associate to the symmetrically structured matrix a graph
and any renumbering of the nodes corresponds to a symmetric
permutation of the matrix. The number of arcs incident in one
node is the degree of the node. The degree of node i corresponds
to the number of nonzeros in row i of the matrix.

Laplace operator approximation by the finite difference method (n = 64,

m = 8)
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Block Tridiagonal Form and graphs

We divide the nodes in level sets Si . S1 consists of one node of
minimum degree. The general level set SI consists of all the
neighbours of nodes in Si−1 that are not in Si−1 or Si−2.

Laplace operator approximation by the finite difference method (n = 64,

m = 8)
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Block Tridiagonal Form and graphs

Renumbering the nodes in the level sets, we have a tridiagonal
matrix where the diagonal block i consists of the nodes in level set
Si .
We can improve the number of diagonal block restarting the
process from one of the nodes in the final level set
(pseudoperipheral nodes).
The resulting order is called the Cuthill-McKee order.
George (1971) proved that reversing the order (Reverse
Cuthill-McKee order) decreases the fill-in in the Gauss
factorization.
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Ordering, Frontal, Multifrontal

I Ordering of sparse matrices: Nested Dissection, minimum
degree, and approximate minimum degree.

I Threshold pivoting and its control

I Frontal e multifrontal methods
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Cholesky via Schur complement

A =

[
d1 vT1
v1 H1

]
=

[ √
d1 0

v1/
√

d1 In−1

] [
1 0
0 S1

] [ √
d1 vT1 /

√
d1

0 In−1

]
= L1A1LT

1

S1 = H1 −
v1vT1

d1

Repeat the operation on S1. L = Ln−1 . . .L1
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Cholesky via Graph theory: notations

P(A) = {(i , j)|aij 6= 0 and i 6= j}
F = L + LT

P(F) = {(i , j)|fij 6= 0 and i 6= j}

P(B) is the pattern of the matrix B. Let (N ) be the set {1, . . . , n}
and GB = (N ,P(B)) the graph with nodes (N ) and undirected
arcs P(B). We denote by Adj(i) = {j |j 6= i , (i , j) ∈ P(B)}

P(A) ⊆ P(F)

Fill(A) = P(F)− P(A)
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Cholesky via Graph theory: fill-in

(S1)ij 6= 0 iff (H1)ij 6= 0 or both (v1)i 6= 0 and (v1)j 6= 0

1. Delete node node x1 and all its incident arcs

2. Add arcs to the graph so that nodes in adj(x1) are pairwise
adjacent in GS1

Lemma 1 The unordered pair (xi , xj) ∈ PF iff (xi , xj) ∈ PA or
(xi , xk) ∈ PF and (xj , xk) ∈ PF for some k < min{i , j}

38 / 84
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Graph theory: example



∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗

∗ ∗ ∗



6

1

4

2 3

5
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Graph theory: reachable points

6

4

2 3

5

1

Let S ⊂ N and x ∈ {N − S}. x is reachable from y through S if
∃(y , v1, . . . vk , x) a path from x to y such that vi ∈ S for
1 ≤ i ≤ k (k = 0⇒ any adjacent node of y not in S is reachable.
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Graph theory: reachable sets

Definition Let S ⊂ N . The reachable set of y through S is

Reach(y , S) = {x ∈ {N − S}|x is reachable from y through S}
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Reach(y , S) = {a, b, c}
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Graph theory: reachable sets

Theorem 2

GF = {{xi , xj}|xj ∈ Reach(xi , {x1, x2, . . . , xi−1})}

Let Gi be the graph of Si the i-th Schur complement

Theorem 3
Let y be a node in Gi . The set of nodes adjacent to y in Gi is
given by

Reach(y , {x1, . . . , xi−1})
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Minimum degree algorithm

1. (Initialization) S ← ∅ . Deg(x)← |Adj(x)| ∀x ∈ N
2. (Minimum degree selection ) Pick a node y ∈ {N − S} where

Deg(y) = min
x∈{N−S}

Deg(x)

Number the node y next and set T ← S ∪ {y}
3. (Degree update) Deg(u)← |Reach(u,T )| ∀u ∈ N − T

4. (loop or stop) If T = N stop. Otherwise set S ← T and go
to 2
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Minimum degree algorithm

The implementation of the Minimum degree algorithm takes
advantage of several other results that improve the speed and
reduce the complexity.
It is possible to partially update the degrees using special heuristics
A good example is the APPROXIMATE MINIMUM DEGREE used
in Matlab and in HSL package MA57. The use of the AMD can be
extended to matrix which are symmetric and indefinite (MA57)
(See Davis, Amestoy, and Duff SIMAX, 1996 , and Duff
RAL-TR-2002-024, 2002)
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Minimum degree algorithm

A with n = 42339 nz(A) = 3095034 and δ = 0.0017
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Minimun degree algorithm

after AMD
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Nested Dissection

Nested Dissection Partition of the Graph of a Finite Difference
problem matrix on a 10× 10 mesh
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Nested Dissection

Nested Dissection Permutation of a Finite Difference problem
matrix on a 10× 10 mesh
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Nested Dissection: storage requirement

The number of nonzeros in the factor L of a matrix A ∈ IRN

associated to a n × n grid (N = n2) is

31n2 log2(n)/4 +O(n2)
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Nested Dissection: complexity

The number of operations required to factor L of a matrix A ∈ IRN

associated to a n × n grid (N = n2) is

829n3/84 +O(n2 log2(n))
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Fiedler vectors

How can we generalise the process of Nested Dissection to a
general symmetric matrix?
PA − I is the adjacency matrix of a the graph supporting the
matrix A. Let us denote by EA the incidence matrix of the graph.
We can interpret E as a discrete divergence operator.
We denote by

L = EAET
A

the Graph-Laplacian .
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Fiedler vectors

L is a Laplacian with Neumann conditions!! Therefore its smallest
eigenvalue is zero. Le assume that the eigenvalues λi (L) are
ordered in increasing order.
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Fiedler vectors

L is a Laplacian with Neumann conditions!! Therefore its smallest
eigenvalue is zero. Le assume that the eigenvalues λi (L) are
ordered in increasing order.
What about λ2(L) ?

52 / 84



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Fiedler vectors

.
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Fiedler vectors

Sorted eigenvector for λ2(L)

.
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Fiedler vectors

We have positive and negative values in each node. Some of them
are small in absolute values! .
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Fiedler vectors

Let us separate the nodes with values ≤ −τ from the nodes with
values ≥ τ , and from the nodes having values ∈ (−τ, τ).
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Fiedler vectors

. We can then reorder the nodes and we have

Permuted graph-Laplacian
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Fiedler vectors

In the previous example we had a separator that is
√

n with n the
order of L.
More generally, if such a separator does exist not only for L but
also for the the red block and the blue block then we can iterate
the process on each of them and have a
GENERALISED NESTED DISSECTION (see METIS).
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Fiedler vectors

UNFORTUNATELLY it is not always the case!
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The unsymmetric matrices: Markowitz criterion

Analogously to the minimum degree criterion, we look at the Schur
complement.

A =

[
d1 wT

1

v1 H1

]
=

[
1 0

v1/d1 In−1

] [
d1 wT

1

0 S1

]
S1 = H1 −

v1wT
1

d1

Repeat the operation on S1. L = Ln−1 . . .L1 and A = LU
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The unsymmetric matrices: Markowitz criterion

Let r
(k)
i be the number of entries in row i of Sk and c

(k)
j be the

number of entries in column j of Sk. The Markowitz criterion

chooses as pivot the entry akij in Sk such that (r
(k)
i − 1)(c

(k)
j − 1)

is minimized.
In the symmetric case r

(k)
i = c

(k)
i and we obtain the minimum

degree rule.
Moreover, we need to control the numerical growth on the entries
during factorization. Thus, we restrict the Markowitz selection to
those pivot candidates that satisfy the inequality

|a(k)kk | ≥ u|a(k)ik | i ≥ k 0 < u ≤ 1
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Analysis phase and Factorization Phase

The reordering algorithms presented are heuristics:
to find the permutation that minimizes the fill-in for a symmetric
matrix is a NP-complete problem
First, we ANALYSE the data structure:

I Reordering

I Estimate if the LU factorization feasible (memory
requirement)

I Elimination tree

Then, we can FACTORIZE
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Frontal Methods

A =
m∑
l=l

A[l ]

where A[l ] has nonzeros only in few rows and columns
(corresponding to an element in the mesh if we are in a
finite-element framework)
Assembling

aij ← aij + a
[l ]
ij

Factorization

aij ← aij − aip(app)−1apj

can be performed as soon all the terms are assembled
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Frontal Methods

We can work only on a small matrix F , the Frontal Matrix, that is
dense but with smaller dimensions compared to A

F =

[
B C
D E

]
B is square of order k and E is square of order r : F ∈ IR(k+r)×(k+r)

k << r , typically k = 10, 20 and r = 200, ..., 500
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Frontal Methods

Front as a window
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Multifrontal Methods


x x x

x x x
x x x
x x x


Assemble the first row and column x x x

x
x


Perform the operation on this front and then assemble the second
row and column and factorize.
First front and second front are independent of each other:
we can do the operation in parallel
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Multifrontal Method: elimination tree


x x x

x x x
x x x
x x x


4

3

1 2

Elimination tree
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Numerical pivot

I Numerical Pivot in sparse solvers

I Scaling

I A-Posteriori sparse backward error analysis

I Condition number estimators

I Iterative refinement
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Gaussian elimination

Theorem Let assume that Ais an n × n matrix of floating point
numbers. If no zero pivots are found during the Gauss process,
then the computed matrices L̂ and Û satisfy

L̂Û = A + E

|E| ≤ 3(n − 1)ε(|A|+ |L̂||Û|) +O(ε2)

We would like that
|A| ≈ |L̂||Û|
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Numerical Pivot in sparse solvers

We know that the partial pivot is not optimal and we have
examples where the |L||U| is much larger than |A|

A =


1 1
−1 1 1

...
...

...
...

−1 . . . −1 1


in the U factor the last column has entries that grow as
2i , i = 1, . . . , n − 1
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Frontal Methods

In the Frontal Matrix, that is dense but with smaller dimensions
compared to A, we can choose the pivot only in fully assembled B.

F =

[
B C
D E

]
If we detect a larger entry in D ( or in C), we have only two
options:

I to delay the pivot moving the corresponding row and column
to E with the hope that further assembling operations will
cure the problem. In the worst case, we will be able to take
care of this pivot in the last matrix

I to correct the value of the pivot adding to it a constant value
β:

I β =
√
ε||A||

I β = ||A||
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Frontal Methods

In both cases, we need to recover the solution of Au = b.
The previous corrections can be seen as perturbations of the
matrix A reordered to reduce fill-in. The computed factor are the
computed factors of

A +
k∑

i=1

βieie
T
i

The first technique allows more pivot corrections than the second
one. If A has a condition number smaller than 1/

√
ε, we can use

an iterative method to recover the solution
In the second case, we can use the Sherman-Morrison formula to
correct the computed solution of the perturbed problem and
recover u
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Scaling

It is good practice to scale the matrix A to obtain a new matrix B
where the nonzero entries are between −1 and 1.
Given D1 and D2 diagonal matrices we have

B = D1AD2

and we solve

By = c y = D−12 x and c = D1b

69 / 84



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Scaling

There are several approach

I equilibration of the data (Curtis and Reid)

I (D1)ii = 1/||Ai•||1 or/and (D2)ii = 1/||A•i ||1
I (D1)ii = 1/||Ai•||∞ or/and (D2)ii = 1/||A•i ||∞
I Compute D1 and D2 such that |B| is doubly stochastic (Ruiz

2002)

All these technique improve the quality of the LU factorization and
decrease the need of choosing numerical pivots different from the
ones optimal for controlling the fill-in
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Rigal-Gaches (1967) theorem

∃∆A,∃δb such that:
(A + ∆A)ũ = (b + δb)

and ‖∆A‖~k,~p ≤ S ∈ IRk×p, ‖δb‖~k ≤ t ∈ IRk

⇔

‖r‖~k ≤ S‖ũ‖~p + t
where r is defined by
r = Aũ− b
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Rigal-Gaches (1967) theorem: component-wise version

If we use | • | as Hypernorm, we have a component-wise version

∃∆A,∃δb such that:
(A + ∆A)ũ = (b + δb) and
|∆A| ≤ ω|A| ∈ IRn×n, |δb| ≤ ω|b| ∈ IRn

⇔

|r| ≤ ω{|A||ũ|+ |b|}
where r is defined by
r = Aũ− b

The smallest ω satisfying the theorem (assuming 0/0 = 0) is

ω = min
i

(|Aũ− b|)i
(|A||ũ|+ |b|)i

‖ũ− u‖∞
‖u‖∞

≤ ω‖|A
−1|(|A||u|+ |b|)‖∞

‖u‖∞
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Condition number estimators
The

cond(A,u) =
‖|A−1|(|A||u|+ |b|)‖∞

‖u‖∞
is the Condition Number ( also known as the Bauer-Skeel
condition number) of the Problem

Au = b

Obviously, the computation of |A−1| is totally unfeasible for large
sparse matrices. The pattern of the inverse will be structurally full.
We would like to approximate the value in O(n2) operation.
The expression ‖|A−1|d‖∞ with d ≥ 0 can be rewritten using
D = diag(d) and e = [1, 1, . . . , 1]T as follows

‖|A−1|d‖∞ = ‖|A−1|De‖∞ = ‖|A−1D|e‖∞ = ‖A−1D‖∞
Then, we need a good estimator for the ‖B‖∞ or, equivalently, for
the ‖B‖1 ( B given n × n matrix).

‖B‖∞ = ‖BT‖1
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Condition number estimators: Hager’s algorithm

In LAPACK and in MC75 (HSL 2002) we have good
implementation of Hager’s algorithm (SISSC 1984) for the
estimate of the 1-norm of a matrix A when we are only able to
compute the matrix-vector product Av.
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Condition number estimators: Hager’s algorithm

Algorithm Given A ∈ IRn×n the algorithm computes γ and v = Aw
s.t. γ ≤ ‖A‖1 with ‖v‖1/‖w‖1 = γ

v = A(n−1e)
if n = 1, quit with γ = |v1|, end
γ = ||v||1, ξ = sign(v), x = AT ξ, k = 2
repeat

j = min{i : |xvi | = ||x||∞}
v = Aej , γ̄ = γ, γ = ||v||1
if sign(v) = ξ or γ ≤ γ̄, goto (*), end
ξ = sign(v), x = AT ξ, k = k + 1

until (||x||∞ = xj or k > 5

(*) xi = (−1)i+1
(

1 + i−1
n−1

)
i = 1, . . . , n

x = Ax
if 2||x||1/(3n) > γ then

v = x, γ = 2||x||1/(3n)
end if
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Condition number estimators

The algorithm is very reliable in practice. It is very rare for the
estimate to be more than three time smaller than the the actual
norm.

Nevertheless, it can give the wrong answer. For the following class
of matrices the algorithm returns the WRONG value 1

A(θ) = I + θP

where P = PT , Pe = 0, Pe1 = 0, and Px = 0
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Condition number estimators: LINPACK

An alternative approach is used in LINPACK. The original idea is
in Cline, Moler, Stewart, and Wilkinson (1978). The algorithm
applies to triangula matrices and can be used in sevarl other
situations (Bischof (1990) used one variants for rank revealing in
QR, Duff and Voemel (2000) used other variants to estimate the
2-norm condition number)

Given the triangular matrix T ∈ IRn×n

1. Choose a vector d s.t. ||y|| is large as possible relative to ||d||,
where TTy = d

2. Solve Tx = y

3. Estimate ||T−1|| ≈ ||x||/||y||
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Iterative refinement

Given û and the system Au = b
fixed precision

mixed precision

Repeat until convergence

I Compute r = b− Aû

I Solve Ad = r

I Update û = û + d
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Iterative refinement

Given û and the system Au = b
fixed precision mixed precision
Repeat until convergence

I Compute r = b− Aû |fl(r)− r| ≤ ε(|A||û|+ |b|)
|fl(r)− r| ≤ ε(|Aû− b|) + ε2(|A||û|+ |b|)

I Solve Ad = r (A + E)y = b ‖A−1E‖∞ < 1

I Update û = û + d |fl(û)− (û + d)| ≤ ε(|û + b|)

78 / 84



Matrices, Graphs, and PDEs: A journey of unexpected relations, BMS, Berlin 2014 Mario Arioli

Iterative refinement
Theorem 1 Let iterative refinement be applied to the
nonsingular system Au = b of order n, using LU factorization. Let
η = ε‖|A−1||L̂||Û|‖∞, where L̂ and Û are the computed LU factors
of A. Then, provided η is sufficiently less than 1, iterative
refinement reduces the error by a factor η at each step until

‖u− û‖∞
‖u‖∞

/ 2nε
‖|A−1|(|A||u|+ |b|)‖∞

‖u‖∞

Theorem 2 Let iterative refinement be applied to the
nonsingular system Au = b of order n, using LU factorization and
with residual computed in double the working precision. Let
η = ε‖|A−1||L̂||Û|‖∞, where L̂ and Û are the computed LU factors
of A. Then, provided η is sufficiently less than 1, iterative
refinement reduces the error by a factor η at each step until

‖u− û‖∞
‖u‖∞

≈ ε
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refinement reduces the error by a factor η at each step until

‖u− û‖∞
‖u‖∞

/ 2nε
‖|A−1|(|A||u|+ |b|)‖∞

‖u‖∞

Theorem 2 Let iterative refinement be applied to the
nonsingular system Au = b of order n, using LU factorization and
with residual computed in double the working precision. Let
η = ε‖|A−1||L̂||Û|‖∞, where L̂ and Û are the computed LU factors
of A. Then, provided η is sufficiently less than 1, iterative
refinement reduces the error by a factor η at each step until

‖u− û‖∞
‖u‖∞

≈ ε
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Iterative refinement

Theorem 3 Let iterative refinement be applied to the
nonsingular system Au = b of order n, using LU factorization and
with residual computed in the working precision. Let
η = ε‖|A−1||L̂||Û|‖∞, where L̂ and Û are the computed LU factors
of A. Then, provided η is sufficiently less than 1, iterative
refinement reduces the residual by a factor η at each step until

ω = min
i

(|Aũ− b|)i
(|A||ũ|+ |b|)i

≈ ε

The definition of ω and Theorem 3 must be slightly modified if b
is also sparse or has very small entries (see Arioli, Demmel, and
Duff (1989) SIMAX)
A more general result can be proved (Jankowski and Wozniakowski
1977). The norm-wise backward convergence of the IRA is proved
for an arbitrary linear solver in fixed precision as long as the solver
is not too unstable and A is not too ill-conditioned.
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Plan B

If IRA fails to converge we have still FGMRES
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Existing software

I MA41 (HSL) or MUPS (Amestoy and L’Excellent
Toulouse):symmetric pattern multifrontal parallel

I MA48 (HSL) unsymmetric matrices (includes IRA and error
estimators) (parallel version)

I MA49 (HSL) sparse QR for least-squares problems.

I MA57 (HSL) symmetric indefinite: LDLT factorization

I MA52 (HSL) out-of-core multiple front

I MA72 (HSL) out-of-core frontal method for finite-element matrices

I MC25 (HSL) BTF

I MC64 (HSL) Scaling and maximum transversal maximizing the
smallest diagonal entry in abs. value

I MC75 (HSL) IRA

I SuperLU (Li, Demmel) unsymmetric case with static pivot

I more .... look in the book Direct Methods for Sparse Matrices Duff,
Erisman, and Reid (second Ed. soon) and
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HSL http://www.hsl.rl.ac.uk
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Final remarks

I Scale the data

I Choose a good reordering reducing the fill-in

I Factorize avoiding as much as possible the numerical pivot:
decrease the threshold or use carefully a static pivot

I Control the quality of the factorization η = ε‖|A−1||L̂||Û|‖∞
must be less than 1

I Use IRA ( or FGMRES)

I Estimate the final error ω cond(A,u)
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